Skip to main content

Physics and Applications of Defect Structures in Photonic Crystals

  • Conference paper
Quantum Communication and Information Technologies

Part of the book series: NATO Science Series ((NAII,volume 113))

  • 561 Accesses

Abstract

We propose and demonstrate a new type of propagation mechanism for electromagnetic waves in photonic band gap materials. Photons propagate through coupled cavities due to interaction between the highly localized neighboring cavity modes. We report a novel waveguide, which we called coupled-cavity waveguide (CCW), in three-dimensional photonic structures. By using CCWs, we demonstrate lossless and reflectionless waveguide bends, efficient power splitters, and photonic switches. We also experimentally observe the splitting of eigenmodes in coupled-cavities and formation of defect band due to interaction between the cavity modes. The tight-binding (TB) approach, which is originally develop for the electronic structures, is applied to the photonic structures, and compared to the experimental results. Our achievements open a new research area, namely physics and applications of coupled-cavities, in photonic structures. We think that our results are very important for constructing future all-optical components on a single chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.

    Article  ADS  Google Scholar 

  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.

    Article  ADS  Google Scholar 

  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton, NJ: Princeton University Press, 1995.

    Google Scholar 

  4. C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century. Dortrecht: Kluwer, 2001.

    Book  Google Scholar 

  5. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science, vol. 275, pp. 1284–1286, 1997.

    Article  Google Scholar 

  6. B. Temelkuran and E. Ozbay, “Experimental demonstration of photonic crystal based waveguides,” Appl. Phys. Lett., vol. 74, pp. 486–488, 1999.

    Article  ADS  Google Scholar 

  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature (London), vol. 394, pp. 251–253, 1998.

    Article  ADS  Google Scholar 

  8. J. G. Fleming and S.-Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett., vol. 24, pp. 49–51, 1999.

    Article  ADS  Google Scholar 

  9. P. R. Villenevue, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air-bridge microcavities,” Appl. Phys. Lett., vol. 67, pp. 167–169, 1995.

    Article  ADS  Google Scholar 

  10. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys., vol. 75, pp. 1896–1899, 1994.

    Article  ADS  Google Scholar 

  11. W. A. Harrison, Electronic Structure and the Properties of Solids. San Francisco: Freeman, 1980.

    Google Scholar 

  12. C. Kittel, Introduction to Solid State Physics, p. 75. New York: John Wiley and Sons, 7th edition ed., 1996.

    Google Scholar 

  13. C. M. de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E, vol. 57, pp. 3502–3509, 1998.

    Article  ADS  Google Scholar 

  14. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B, vol. 57, pp. 12127–12133, 1998.

    Article  ADS  Google Scholar 

  15. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett., vol. 81, pp. 1405–1408, 1998.

    Article  ADS  Google Scholar 

  16. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett., vol. 82, pp. 4623–4626, 1999.

    Article  ADS  Google Scholar 

  17. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., vol. 24, pp. 711–713, 1999.

    Article  ADS  Google Scholar 

  18. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett., vol. 84, pp. 2140–2143, 2000.

    Article  ADS  Google Scholar 

  19. M. Bayindir, I. Bulu, E. Cubukcu, and E. Ozbay, “Investigation of localized coupled-cavity modes in two-dimensional photonic band gap structures,” IEEE J. Quantum Electron., vol. xx, p. yyyy, 2002.

    Google Scholar 

  20. M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveg-uiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B, vol. 61, pp. R11855–R11858, 2000.

    Article  ADS  Google Scholar 

  21. M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B, vol. 62, pp. R2247–R2250, 2000.

    Article  ADS  Google Scholar 

  22. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett., vol. 77, pp. 3902–3904, 2000.

    Article  ADS  Google Scholar 

  23. M. Bayindir and E. Ozbay, “Observation of directional coupling between photonic crystal waveguides,” Phys. Rev. B, 2002 [Submitted].

    Google Scholar 

  24. M. Bayindir and E. Ozbay, “Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures,” Appl. Phys. Lett., 2002 [Submitted].

    Google Scholar 

  25. M. Bayindir and E. Ozbay, “Dropping of photons in two-dimensional photonic band gap structures,” Opt. Express, 2002 [Submitted].

    Google Scholar 

  26. M. Bayindir, S. Tanriseven, and E. Ozbay, “Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,” Appl. Phys. A: Mater. Sci. Process, vol. 72, pp. 117–119, 2001.

    Article  ADS  Google Scholar 

  27. M. Bayindir, C. Kural, and E. Ozbay, “Coupled optical microcavities in one-dimensional photonic band gap structures,” J. Opt. A: Pure and Appl. Opt., vol. 3, pp. 184–189, 2001.

    Article  ADS  Google Scholar 

  28. M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, “Photonic band gap effect, localization, and waveguiding in two-dimensional penrose lattice,” Phys. Rev. B, vol. 63, p. 161104(R), 2001.

    ADS  Google Scholar 

  29. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett., vol. 26, pp. 1019–1021, 2001.

    Article  ADS  Google Scholar 

  30. A. L. Reynolds, U. Peschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. de Maagt, “Coupled defects in photonic crystals,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1860–1867, 2001.

    Article  ADS  Google Scholar 

  31. S. Lan, S. Nishikawa, and O. Wada, “Leveraging deep photonic band gaps in photonic crystal impurity bands,” Appl. Phys. Lett., vol. 78, pp. 2101–2103, 2001.

    Article  ADS  Google Scholar 

  32. S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, “Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses,” J. Appl. Phys., vol. 90, pp. 4321–4327, 2001.

    Article  ADS  Google Scholar 

  33. S. Lan, S. Nishikawa, Y. Sugimoto, N. Ikeda, K. Asakawa, and H. Ishikawa, “Analysis of defect coupling in one-and two-dimensional photonic crystals,” Phys. Rev. B, vol. 65, p. 165208, 2002.

    Article  ADS  Google Scholar 

  34. M. M. Sigalas and C. A. Flory, “Microwave measurements of stub tuners in two-dimensional photonic crystal waveguides,” Phys. Rev. B, vol. 65, p. 125209, 2002.

    Article  ADS  Google Scholar 

  35. M. I. Antonoyiannakis and J. B. Pendry, “Mie resonances and bonding in photonic crystals,” Europhys. Lett., vol. 40, pp. 613–618, 1997.

    Article  ADS  Google Scholar 

  36. M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev B, vol. 60, pp. 2363–2374, 1999.

    Article  ADS  Google Scholar 

  37. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett., vol. 81, pp. 2582–2585, 1998.

    Article  ADS  Google Scholar 

  38. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B, vol. 17, pp. 387–400, 2000.

    Article  ADS  Google Scholar 

  39. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun., vol. 89, p. 413, 1994.

    Article  ADS  Google Scholar 

  40. E. Ozbay, “Layer-by-layer photonic crystals from microwave to far-infrared frequencies,” J. Opt. Soc. Am. B, vol. 13, pp. 1945–1955, 1996.

    Article  ADS  Google Scholar 

  41. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett., vol. 67, pp. 3380–3383, 1991.

    Article  ADS  Google Scholar 

  42. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., vol. 77, pp. 3787–3790, 1996.

    Article  ADS  Google Scholar 

  43. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science, vol. 282, pp. 274–276, 1998.

    Article  ADS  Google Scholar 

  44. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476–1479, 1998.

    Article  Google Scholar 

  45. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett., vol. 73, pp. 1368–1371, 1994.

    Article  ADS  Google Scholar 

  46. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett., vol. 21, pp. 2017–2019, 1996.

    Article  ADS  Google Scholar 

  47. K. Sakoda and K. Ohtaka, “Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell’s equations and their applications,” Phys. Rev. B, vol. 54, pp. 5732–5741, 1996.

    Article  ADS  Google Scholar 

  48. K. Sakoda, “Enhanced light ampli cation due to group-velocity anomaly peculiar to two-and three-dimensional photonic crystals,” Opt. Express, vol. 4, pp. 167–176, 1999.

    Article  ADS  Google Scholar 

  49. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt., vol. 42, p. 345, 1994.

    Article  ADS  Google Scholar 

  50. Y. A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E, vol. 60, pp. 1030–1035, 1999.

    Article  ADS  Google Scholar 

  51. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett., vol. 74, pp. 1370–1372, 1999.

    Article  ADS  Google Scholar 

  52. A. de Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett., vol. 75, pp. 1625–1627, 1999.

    Article  ADS  Google Scholar 

  53. T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett., vol. 35, pp. 654–655, 1999.

    Article  Google Scholar 

  54. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett., vol. 76, pp. 952–954, 2000.

    Article  ADS  Google Scholar 

  55. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett., vol. 77, pp. 1937–1939, 2000.

    Article  ADS  Google Scholar 

  56. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5 μm wavelength,” Opt. Lett., vol. 25, pp. 1297–1299, 2000.

    Article  ADS  Google Scholar 

  57. M. M. Sigalas, R. Biswas, K.-M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Micro. Opt. Tech. Lett., vol. 23, pp. 56–59, 1999.

    Article  Google Scholar 

  58. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett., vol. 75, pp. 3739–3741, 1999.

    Article  ADS  Google Scholar 

  59. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science, vol. 289, pp. 604–606, 2000.

    Article  ADS  Google Scholar 

  60. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B, vol. 62, pp. 8212–8222, 2000.

    Article  ADS  Google Scholar 

  61. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K.-M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B, vol. 63, p. 081107(R), 2001.

    ADS  Google Scholar 

  62. N. W. Ashcroft and N. D. Mermin, Solid State Physics. Philadelphia: Saunders, 1976.

    Google Scholar 

  63. J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol., vol. 17, pp. 1500–1508, 1999.

    Article  ADS  Google Scholar 

  64. R. W. Ziolkowski and M. Tanaka, “FDTD analysis of PBG waveguides, power splitters and switches,” Opt. Quant. Electron., vol. 31, pp. 843–855, 1999.

    Article  Google Scholar 

  65. T. Sondergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B, vol. 61, pp. 15688–15696, 2000.

    Article  ADS  Google Scholar 

  66. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett., vol. 80, pp. 960–963, 1998.

    Article  ADS  Google Scholar 

  67. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, “Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,” Opt. Lett., vol. 25, pp. 1502–1504, 2000.

    Article  ADS  Google Scholar 

  68. S. S. Oh, C.-S. Kee, J.-E. Kim, H. Y. Park, T. I. Kim, I. Park, and H. Lim, “Duplexer using microwave photonic band gap structure,” Appl. Phys. Lett., vol. 76, pp. 2301–2303, 2000.

    Article  ADS  Google Scholar 

  69. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol., vol. 19, pp. 1970–1975, 2001.

    Article  ADS  Google Scholar 

  70. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt., vol. 40, pp. 2247–2252, 2001.

    Article  ADS  Google Scholar 

  71. C. Jin, S. Han, X. Meng, B. Cheng, and D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys., vol. 91, pp. 4771–4773, 2002.

    Article  ADS  Google Scholar 

  72. E. Ozbay, G. Tuttle, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band-gap crystal,” Phys. Rev. B, vol. 51, pp. 13961–13965, 1995.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ozbay, E., Bayindir, M. (2003). Physics and Applications of Defect Structures in Photonic Crystals. In: Shumovsky, A.S., Rupasov, V.I. (eds) Quantum Communication and Information Technologies. NATO Science Series, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0171-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0171-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1453-6

  • Online ISBN: 978-94-010-0171-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics