Skip to main content

Abstract

Brain edema and increased intracranial pressure, well recognised major complications of fulminant hepatic failure,1 have recently been documented in patients with end-stage cirrhosis.2 Neuroradiological evidence of cerebral edema in patients with chronic liver disease is associated with a poor prognosis. Medical treatments for brain edema in patients with cirrhosis have limited efficacy and, in general, liver transplantation is the only intervention which may prevent a fatal outcome.2 During the last 10 years several in vivo studies using magnetic resonance spectroscopy (MRS) have contributed to progress in understanding the neurochemical mechanisms responsible for hepatic encephalopathy (HE) and brain edema in cirrhotic patients.311 Proton (1H-) and carbon (13C-) MRS studies of the brain of cirrhotic patients with overt and minimal HE have typically shown an increase in glutamine,3,58,12 a decrease in glutamate,6,810 and a decrease in the cerebral osmolyte myoinositol.47 An increase in brain glutamine, the result of ammonia detoxification in astrocytes, has been implicated as the key metabolic change determining cell swelling and increased brain water in patients with HE.13,14 Studies on rats have shown that inhibition of glutamine synthesis with methionine-sulfoximine prevents the development of ammonia-induced brain edema,15 decreases ammonia-induced astrocyte swelling,16 and reduces brain edema after portacaval anastomosis and ammonia infusion.17 The impaired cell volume homeostasis and brain edema in patients with HE may be the result of intracellular accumulation of osmotically active glutamine associated with a progressive depletion of myo-inositol and other osmolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canalese J, Gimson AE, Davis C, Mellon PJ, Davis M and Williams R. Controlled trial of dexamethasone and mannitol for the cerebral oedema of fulminant hepatic failure. Gut 1982; 23: 625–629.

    Article  PubMed  CAS  Google Scholar 

  2. Donovan JP, Schafer DF, Shaw BW, Jr. and Sorrell MF. Cerebral oedema and increased intracranial pressure in chronic liver disease. Lancet 1998; 351: 719–721.

    Article  PubMed  CAS  Google Scholar 

  3. Kreis R, Farrow N and Ross BD. Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed 1991; 4: 109–116.

    Article  PubMed  CAS  Google Scholar 

  4. Häussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W and Hennig J. Proton magnetic resonance spectroscopy studies on human brain myoinositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 1994; 107: 1475–1480.

    PubMed  Google Scholar 

  5. Taylor-Robinson SD, Buckley C, Changani KK, Hodgson HJ and Bell JD. Cerebral proton and phosphorus-31 magnetic resonance spectroscopy in patients with subclinical hepatic encephalopathy. Liver 1999; 19: 389–398.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor-Robinson SD, Sargentoni J, Marcus CD, Morgan MY and Bryant DJ. Regional variations in cerebral proton spectroscopy in patients with chronic hepatic encephalopathy. Metab Brain Dis 1994; 9: 347–359.

    Article  PubMed  CAS  Google Scholar 

  7. Taylor-Robinson SD, Sargentoni J, Oatridge A, Bryant DJ, Hajnal JV, Marcus CD, Seery JP, Hodgson HJ and deSouza NM. MR imaging and spectroscopy of the basal ganglia in chronic liver disease: correlation of Tl-weighted contrast measurements with abnormalities in proton and phosphorus-31 MR spectra. Metab Brain Dis 1996; 11: 249–268.

    Article  PubMed  CAS  Google Scholar 

  8. Bluml S, Moreno-Torres A and Ross BD. [l–13C]glucose MRS in chronic hepatic encephalopathy in man. Magn Reson Med 2001; 45: 981–993.

    Article  PubMed  CAS  Google Scholar 

  9. Bosnian DK, Deutz NE, De Graaf AA, vd Hulst RW, Van Eijk HM, Bovee WM, Maas MA, Jorning GG and Chamuleau RA. Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 1990; 12: 281–290.

    Article  Google Scholar 

  10. Fitzpatrick SM, Hetherington HP, Behar KL and Shulman RG. Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 3IP nuclear magnetic resonance. J Neurochem 1989; 52: 741–749.

    Article  PubMed  CAS  Google Scholar 

  11. Barbiroli B, Gaiani S, Lodi R, Iotti S, Tonon C, Clementi V, Donati G and Bolondi L. Abnormal brain energy metabolism shown by in vivo phosphorus magnetic resonance spectroscopy in patients with chronic liver disease. Brain Res Bull 2002; 59: 75–82.

    Article  PubMed  CAS  Google Scholar 

  12. Butterworth RF, Giguere JF, Michaud J, Lavoie J and Layrargues GP. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 1987; 6: 1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Cordoba J, Gottstein J and Blei AT. Glutamine, myo-inositol, and organic brain osmolytes after portocaval anastomosis in the rat: implications for ammonia-induced brain edema. Hepatology 1996; 24: 919–923.

    PubMed  CAS  Google Scholar 

  14. Kimelberg HK. Current concepts of brain edema. Review of laboratory investigations. J Neurosurg 1995;83:1051–1059.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi, H, Koehler RC, Brusilow SW and Traystman RJ. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991; 261: H825–H829.

    PubMed  CAS  Google Scholar 

  16. Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ and Brusilow SW. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 1996; 71: 589–599.

    Article  PubMed  CAS  Google Scholar 

  17. Blei, AT, Olafsson S, Therrien G and Butterworth RF. Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 1994; 19: 1437–1444.

    Article  PubMed  CAS  Google Scholar 

  18. Le Bihan, D, Turner R, Douek P and Patronas N. Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 1992; 159: 591–599.

    Article  PubMed  Google Scholar 

  19. Gass A, Niendorf T and Hirsch JG. Acute and chronic changes of the apparent diffusion coefficient in neurological disorders—biophysical mechanisms and possible underlying histopathology. J Neurol Sci 2001; 186Suppll:S15–23.

    Article  PubMed  Google Scholar 

  20. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E and Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401–407.

    PubMed  Google Scholar 

  21. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys Chem 1977; 10: L55–L58.

    CAS  Google Scholar 

  22. Stejskal EO and Tanner JE. Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288–292.

    Article  CAS  Google Scholar 

  23. Jezzard P, Barnett AS and Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801–812.

    Article  PubMed  CAS  Google Scholar 

  24. Haselgrove JC and Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med 1996; 36: 960–964.

    Article  PubMed  CAS  Google Scholar 

  25. Noms DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed 2001; 14: 77–93.

    Article  Google Scholar 

  26. Nicolay K, Braun KP, Graaf RA, Dijkhuizen RM and Kruiskamp M J. Diffusion NMR spectroscopy. NMR Biomed 2001; 14: 94–111.

    Article  PubMed  CAS  Google Scholar 

  27. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M and Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847–857.

    Article  PubMed  CAS  Google Scholar 

  28. Assaf Y and Cohen Y. Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 1998; 131: 69–85.

    Article  PubMed  CAS  Google Scholar 

  29. Inglis BA, Bossart EL, Buckley DL, Wirth ED, 3rd and Mareci TH. Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn Reson Med 2001; 45: 580–587.

    Article  PubMed  CAS  Google Scholar 

  30. Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CR, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA and Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51–62.

    Article  PubMed  CAS  Google Scholar 

  31. Chin CL, Wehrli FW, Hwang SN, Takahashi M and Hackney DB. Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture. Magn Reson Med 2002; 47: 455–460.

    Article  PubMed  Google Scholar 

  32. Häussinger D, Kircheis G, Fischer R, Schliess F and vom Dahl S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 2000; 32: 1035–1038.

    Article  PubMed  Google Scholar 

  33. Martinez-Hernandez A, Bell KP and Norenberg MD. Glutamine synthetase: glial localization in brain. Science 1977; 195: 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  34. Isaacks RE, Bender AS, Kim CY, Shi YF and Norenberg MD. Effect of osmolality and anion channel inhibitors on myo-inositol efflux in cultured astrocytes. J Neurosci Res 1999; 57: 866–871.

    Article  PubMed  CAS  Google Scholar 

  35. Burg MB. Molecular basis of osmotic regulation. Am J Physiol 1995; 268: F983–F996.

    PubMed  CAS  Google Scholar 

  36. Bluml S, Zuckerman E, Tan J and Ross BD. Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J Neurochem 1998; 71: 1564–1576.

    Article  PubMed  CAS  Google Scholar 

  37. Laubenberger J, Häussinger D, Bayer S, Gufler H, Hennig J and Langer M. Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 1997; 112: 1610–1616.

    Article  PubMed  CAS  Google Scholar 

  38. Sobel RA, DeArmond SJ, Forno LS and Eng LF. Glial fibrillary acidic protein in hepatic encephalopathy. An immunohistochemical study. J Neuropathol Exp Neurol 1981; 40: 625–632.

    Article  PubMed  CAS  Google Scholar 

  39. Eng LF, Ghirnikar RS and Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000; 25: 1439–1451.

    Article  PubMed  CAS  Google Scholar 

  40. Cornet M, Lambert IH and Hoffmann EK. Relation between cytoskeleton, hypo-osmotic treatment and volume regulation in Ehrlich ascites tumor cells. J Membr Biol 1993; 131: 55–66.

    Article  PubMed  CAS  Google Scholar 

  41. Chen KC and Nicholson C. Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc Natl Acad Sci USA 2000; 97: 8306–8311.

    Article  PubMed  CAS  Google Scholar 

  42. Szafer A, Zhong J and Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697–712.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lodi, R. et al. (2003). Brain diffusion weighted MRI in cirrhosis. In: Jones, E.A., Meijer, A.J., Chamuleau, R.A.F.M. (eds) Encephalopathy and Nitrogen Metabolism in Liver Failure. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0159-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0159-5_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3967-3

  • Online ISBN: 978-94-010-0159-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics