Skip to main content

Nanocoating of Particulate Surface in Colloidal Processing for Piezoelectric Sensors Applications

  • Chapter
Nanostructured Materials and Coatings for Biomedical and Sensor Applications

Part of the book series: NATO Science Series ((NAII,volume 102))

Abstract

Colloidal processing offers the advantage of controlling the interactions between particles. Nanometer is the critical length scale for interparticle interactions. Modification of interparticle separation in the nanometer range plays a critical role in the properties of particulate suspensions. We have developed a nanocoating method that modifies the surface chemistry of ceramic powders. The nanocoating serves multiple purposes. It enhances the chemical and thermal stability of the powders, improves the consolidation and rheological properties of slurries, increases the homogeneous distribution of processing additives, and lowers the sintering temperatures of the green compacts. for example, we showed that boehmite (AlOOH)-coated silicon nitride and silicon carbide powders have a significantly higher solids loading than the uncoated powders in water. Coated suspensions have lower viscosity and wider linear viscoelastic region, and lower shear modulus than that of uncoated suspensions. With an increasing coating thickness, the shear modulus of coated suspensions decreases indicating the coating prevents close contact of core particles thereby reducing the van der Waals attraction interaction between the core particles. Boehmite coating is shown to enhance the thermal stability of catalytic oxide ZrO2. Coating of Mg(OH)2 layer on Nb2O5 particles facilitates the synthesis of pyrochlore-free perovskite lead manganese niobate (PMN) powders by a single heat-treatment step. Normally this must be done in two heat-treatment steps as in the columbite process. More recently, the coating technique has been used to fabricate piezoelectric PMN-PT thick-film sensors. Piezoelectric-metal bimorphs have been fabricated to detect yeast cells and biotinylated polystyrene spheres with a sensitivity of 10−9 g/Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.-H. Shih, D. Kisailus, W. Y. Shih, Y.-H. Hu, and J. Hughes, “Rheology and Consolidation of Colloidal Alumina-Coated Silicon Nitride Suspensions,” J. Am. Ceram. Soc., 79[5] 1155–1162 (1996).

    Article  CAS  Google Scholar 

  2. W.-H. Shih, W. Y. Shih, S. I. Kim, J. Liu, and I. A. Aksay, ”Scaling Behavior of the Elastic Properties of Colloidal Gels,” Phys. Rev. A. 42, 4772–4779(1990).

    Article  CAS  Google Scholar 

  3. S. S. Narine and A. G. Marangoni, “Relating Structure of Fat Crystal Networks to Mechanical Properties: a Review,” Food Research International 32, 227–248 (1999).

    Article  CAS  Google Scholar 

  4. O. Spalla and P. Kekicheff, “Adhesion between Oxide Nanoparticles: Influence of Surface Complexation,” J. Colloid & Interf. Sci., 192, 43–65 (1997).

    Article  CAS  Google Scholar 

  5. W. Y. Shih, W.-H. Shih, and I. A. Aksay, “Elastic and Yield Behavior of Strongly Flocculated Colloids,” J. Am. Ceram. Soc., 82[3], 616–624 (1999).

    CAS  Google Scholar 

  6. W. Y. Shih, I. A. Aksay and R. Kikuchi, “Reversible Growth Model: Cluster-Cluster Aggregation With Finite Binding Energies,” Phys. Rev. A 36, 5015 (1987).

    Article  CAS  Google Scholar 

  7. J. Liu, M. Sarikaya, W. Y. Shih and I. A. Aksay, “Fractal Colloidal Aggregates With Finite Interparticle Interactions: Energy Dependence of the Fractal Dimension”, Phys. Rev. A 41, 3206 (1990).

    Article  CAS  Google Scholar 

  8. W. Y. Shih, W.-H. Shih, and I. A. Aksay, “Mechanical Properties of Colloidal gels subject to particle rearrangement”, Mat. Res. Soc. Symp. Proc. 195, 477 (1990).

    Article  CAS  Google Scholar 

  9. J. Liu, W. Y. Shih, R. Kikuchi, and I. A. Aksay, “On the Clustering of Binary Colloidal Suspensions,” J. Colloid & Interf. Sci. 142, 369 (1991).

    Article  CAS  Google Scholar 

  10. W. Y. Shih, W. H. Shih, I. A. Aksay, “Heteroflocculation in Binary Colloidal Suspensions: Monte Carlo Simulations,” J. Am. Ceram. Soc. 79(10) 2587 (1996).

    Article  CAS  Google Scholar 

  11. C.-Y. Yang and W.-H. Shih, “Effect of Acid on the Coating of Boehmite onto SiC Particles in Aqueous Suspensions,” J. Am. Ceram. Soc., 82[2] 436–440 (1999).

    CAS  Google Scholar 

  12. C.-Y. Yang, W. Y. Shih, and W.-H. Shih, “Gelation, Consolidation, and Rheology of Boehmite-Coated SiC Suspensions,” J. Am. Ceram. Soc., 83[8], 1879–1884 (2000).

    CAS  Google Scholar 

  13. C. Y. Yang, W. Y. Shih, and W.-H. Shih, “Effects of Boehmite Coating Thickness on the Consolidation and Rheological Properties of Boehmite-Coated SiC Suspensions,” J. Am. Ceram. Soc. 84[12] 2834–2840 (2001)

    Article  CAS  Google Scholar 

  14. C. Y. Yang, W. Y. Shih, and W.-H. Shih, “Monte Carlo Simulations of the Nucleation and Growth Process of Colloidal Particles,” Phys. Rev. E., 64, 021403, (2001).

    Article  CAS  Google Scholar 

  15. C. Y. Yang, “Experimental Study and Numerical Simulation on Synthesis, Properties and Applications of Oxide-Coated Ceramic Particles,” PhD Thesis, Drexel University, (2000)

    Google Scholar 

  16. L. E. Cross, “Relaxor Ferroelectrics,” Ferroelectrics, 151, 305–320 (1994).

    Article  CAS  Google Scholar 

  17. S. L. Swartz and T.R. Shrout, “Fabrication of Perovskite Lead Magnesium Niobate,” Mater. Res. Bull., Vol 17, 1245-1250,(1982).

    Google Scholar 

  18. T. R. Shrout and A. Halliyal, “Preparation of Lead-Based Ferroelectric Relaxors for Capacitors,” Am. Ceram. Soc. Bull., 66[4] 704–711 (1987).

    CAS  Google Scholar 

  19. Huiming Gu, W, Y. Shih, and W.-H. Shih, “A Single-Calcination Synthesis of Pyrochlore-Free 0.9PMN-0.lPT and PMN Ceramics by a Coating Method,” in press, J. Am. Ceram. Soc.

    Google Scholar 

  20. J. W. Yi, W. Y. Shih, and W.-H. Shih, “Effects of Length, Width, and Mode on the Mass Detection Sensitivity of Piezoelectric Unimorph Cantilevers,” J. Appl. Phys. 91[3], 1680–1686 (2002)

    Article  CAS  Google Scholar 

  21. J. W. Yi, Wan Y. Shih, R. Mutharasan, and Wei-Heng Shih, “In Situ Cell Detection Using Piezoelectric PZT-Stainless Steel Cantilevers,” submitted to J. Appl. Phys.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shih, WH., Shih, W.Y., Yang, CY., Gu, H., Yi, J.W. (2003). Nanocoating of Particulate Surface in Colloidal Processing for Piezoelectric Sensors Applications. In: Gogotsi, Y.G., Uvarova, I.V. (eds) Nanostructured Materials and Coatings for Biomedical and Sensor Applications. NATO Science Series, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0157-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0157-1_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1321-8

  • Online ISBN: 978-94-010-0157-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics