Skip to main content

Nanostructured Materials in Medicine. State of the Art in Ukraine

  • Chapter
  • 485 Accesses

Part of the book series: NATO Science Series ((NAII,volume 102))

Abstract

Most biological materials are composites at all levels from the organization of individual macromolecules to the whole organism and are distinguished from any synthetic composites by their structural and organization complexity. Bones, teeth and shells have a polymeric matrix reinforced by a mineral, hydroxyapatite or calcium carbonate, which forms within the matrix. In bone, for example, a glycosaminoglycan matrix is reinforced with polymer fibres and with ribbon- or plate-like crystallites of hydroxyapatite, a calcium phosphate. The extent of mineralization varies depending on the exact function of the living organs. A typical level is about 38 vol. % mineral with a crystalline thickness of 4 nm and lateral dimensions of 35 nm or more. The structure of mammalian tooth is similar but the mineral level is higher, about 86 vol %, and the individual crystallites are larger. Shells of invertabrates have a comparable range of structures but the mineral is normally calcium carbonate and the matrix is reinforced with chitin [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Calvert, S. Mann (1988) Review Synthetic and biological composites formed by in situ precipitation, J. of Mater. Sci, 23, pp.3801–3815.

    Article  CAS  Google Scholar 

  2. V.A. Dubok (2000) Bioceramics — yesterday, today, tomorrow, Powder Metallurgy and Metal Ceramics, N 7-8, pp.69–87.

    Google Scholar 

  3. L. Smith (1963)Ceramoplastic material as a bone substitute, Arch. Surg., 87, pp.653–661.

    Article  CAS  Google Scholar 

  4. S.P. Hulbert, S.J. Morrison, J.J. Klawitter (1972) Tissue reaction to three ceramics of porous and nonporous structures, J. Biomed. Mater. Res., 6, pp. 347–374.

    Article  CAS  Google Scholar 

  5. V.A. Dubok, O.N. Atamanenko, A.V. Shinkaruk, E.A. Shevchenko (2001) Study of hydroxyapatite physical properties as the foundation for directional control of its bioactivity, 7th meeting and seminar on Bioceramics cells and tissues, Biomimetic Engineering: a new role for ceramics, Faenza, Italy. June 13-15.

    Google Scholar 

  6. V.A. Dubok, A.V. Shevchenko (2001) Structure and properties of hydroxyapatite nanopowders synthesized by different methods, NATO Advanced Research Workshop Autumn School: Frontiers in Molecular-Scale Science, Biopolymer Multifunctional Nanosystems, Kiev, 9-12 September 2001, SB–R2.

    Google Scholar 

  7. V.A. Dubok, O.N. Atamanenko, E.A. Shevchenko, A.V. Shinkaruk (2002) Study of bioceramics fundamental properties as the basis to control their biological behaviour, — Proceedings of the International Conference CERAM-2001, Polish Ceramic Bulletin.

    Google Scholar 

  8. V.A. Dubok, N.V. Ulyanchich (1998) Synthesis, properties and using of osteotropic substitute of bone issue on the base of ceramic hydroxyapatite, Orthopedics, traumatology and prosthesis, No3, pp. 26–30.

    Google Scholar 

  9. M. Vatanatham, S. Kimura (2001) Hydroxyapatite coating on thermally oxidized titanium substrates, J. Am. Ceram. Soc., 84(9), pp. 2135–2137.

    Article  CAS  Google Scholar 

  10. A.V. Shevchenko, E.A. Shevchenko, V.A. Dubok (2001) Bioactive coatings on high strength zirconia based ceramics, 7th meeting and seminar on Bioceramics cells and tissues, Biomimetic Engineering: a new role for ceramics, Faenza, Italy, June 13-15.

    Google Scholar 

  11. Suk-Woo Ha, R. Rebert, K-L. Eckert et al. (1998) Chemical and Morphological Changes of vacuumplasma-sprayed hydroxyapatite coatings during immersion in simulated physiological solutions, J. Am. Ceram. Soc., 81(1), pp.81–88.

    Article  CAS  Google Scholar 

  12. J.F. Kay (1992) Calcium-phosphate coatings for dental implant — current status and future potential, Dent. Clin. North Am., 36(1), pp.1–18.

    CAS  Google Scholar 

  13. J. Huracek, P. Spirig (1994) The effect of hydroxyapatite coatings on the fixation of hip prosthesis. A comparison of clinical and radiographic results of hip replacement in a matched pair study, Arch. Orthop. Traum. Surg, 111(2), pp.72–77.

    Google Scholar 

  14. R.G. Courtney-Harris, M.V. Kayser, S. Downess (1995) Comparison of early production of extracellular matrix on dense hydroxyapatite and hydroxyapatite-coated titanium in cell and organ culture, Biomaterials, 16(6), pp.489–495.

    Article  Google Scholar 

  15. S. Hurson Differentiation of HA coatings, J. Dent.Symp., 1, pp.65–66.

    Google Scholar 

  16. C. Chai, B. Ben-Nissan (1993), Interfacial reactions between titanium and hydroxyapatite, J.Aust. Ceram. Soc., 29(1/2), pp.71–80.

    Google Scholar 

  17. L.A. Litvinov (2001) Review Sapphire manufactures for medicine in Functional Materials for Science and Technique Inst. of Monocrystals Publisher, Charkiv, pp.188–199.

    Google Scholar 

  18. O.N. Gudushauri, B.L. Solomiansky, D.A. Omiadse (1978) On the materials for the substitution of defect of bones and for the joining of bones, Orthopedy, traumatology and prosthetics 6, pp. 1–6.

    Google Scholar 

  19. I.S. Kaynarsky, E.V. Dieghtiaryova, I.G. Orlova (1981) Corundum refractories and ceramics, Metalurgy, Moscow,.231 p.

    Google Scholar 

  20. T.I. Sanduza, L.A. Dierghaputskaya (1990) The research of properties of corundum heat insulating products. Refractories, 1, pp. 14–17.

    Google Scholar 

  21. V.V. Martynenko, N.A. Korzh, P.P. Krivoruchko, L.A. Dierghaputskaya, N.L. Pyanyh, S.N. Shevchenko, G.Kh. Gruntovsky (1999) Aluminium oxide — from porcelain and precious stones up to endoprostheses for the reconstructive-rehabilitative surgery of human osseous tissues. Ukrainian ceramics. National Cultural Annual, 4, pp.257–261.

    Google Scholar 

  22. Kazutaka Sasaki, Manabu Nakano, Junpei Mimurada, Yiichi Ikuhara, Taketo Sakuma (2001) Strain Hardening in Superplastic Codoped Yttria-Stabilized Tetragonal-Zirconia Polycrystals, J. Am. Ceram. Soc., 84(12), pp.2981–2986.

    Article  CAS  Google Scholar 

  23. P.M. Royce, B. Steinman (1993) Connective tissue and its heritable disorders. Molecular, cenetic and mineral aspects, pp.85–101.

    Google Scholar 

  24. G. Runge (1995) Osteoporosis Medicine Publisher, Moscow.

    Google Scholar 

  25. V. Doubok, N. UIyanchich, A. Zyrin, A. Senkevich, E. Buzaneva(1999) Synthesis of hydroxyapatite powders with controlled morphology to produce osteotropic granules and ceramics for different applications in surgery. British ceramic proceedings, 2(60), pp. 515–517.

    Google Scholar 

  26. A.B. Brik, N.N. Bagmut, A.M. Kalinichenko, O.N. Atamanenko, O.I. Scherbina, V.A. Dubok, N.V. Ulianchich (2000) Characteristics of phosphate paramagnetic centres in natural apatites, biominerals and their synthetic analogues. ISSN 0204-3548. Mineralogical journal, No4, pp,8–18.

    Google Scholar 

  27. V.A. Dubok, E.A. Shevchenko, A.V. Shinkaruk et al. (2002). Regulation and control of structure and relief of particles’ surface of hydroxyapatite nanopowders for use in different medical applications, E-MRS 2002 Spring Meeting, Strasburg, June 2002

    Google Scholar 

  28. V.A. Dubok, N.V. Ul’yanchich (1998). Syntesis, properties and uses of osteotropic replacements for bone tissue based on hydroxyapatite Ortoped., Travmat., Protez., N3, pp.26–30.

    Google Scholar 

  29. T. Kanazava (1998) Inorganic Materials, Kiev, Naukova Dumka, 298 p.

    Google Scholar 

  30. K. Carlson (1998) Biochemical activity of glass and its connection with structure, Fiz. Khim. Stekla, 24(3), pp.405–412.

    Google Scholar 

  31. Malushkina S.V., Dedux N.V., Gruntovsky G.X. et al. (1998), J. of Orthopedy., Travmatology, Prosthesis, N3 pp.110–114.

    Google Scholar 

  32. L.A. Ivanchenko, E.P. Podruchnyak, O.Yu. Xijun et al. (1999) Energy of electron transition in crystal of bone hydroxyapatite at people of different age, DAN Ukraine, 3, pp.168–173.

    Google Scholar 

  33. I.A. Ivanchenko, T.I. Falkovska, N.V. Danilenko et al. (1999) Structure and properties of a high-porous glass ceramics containing biological hydroxyapatite, Powder Metallurgy and Metal Ceramics, 38(9/10), pp.418–453.

    Google Scholar 

  34. I.A. Ivanchenko, T.I. Falkovska, N.D. Pinchuk et al. (2002) Production and properties of hydroxyapatite reinforced by glass phase, Powder Metallurgy and Metal Ceramics, 41 (in print).

    Google Scholar 

  35. Patent of Ukraine 23250, Priority from 22.07.97

    Google Scholar 

  36. I.A. Ivanchenko, T.I. Falkovska, N.V. Danilenko et al. (1999) Refractory and ceramics materials Structure and properties of a high-porosity glass ceramic containing biological hydroxiapatate Powder metallurgy and Metal Ceramics 38(9/10) pp. 448–453.

    Article  CAS  Google Scholar 

  37. E.P. Podruchnyak, L.A. Ivanchenko, A.T. Brusko (2000) The perspectives for using of glass-ceramics containing biological hydroxyapatite at reduction of bone issue // J. of Orthopedy., Travmatology, Prosthesis, N2, pp. 129–130.

    Google Scholar 

  38. V.P. Orlovskii, S.G. Kurdyumov, O.I. SIivca (1996) Syntesis, properties and uses of calcium hydroxyapatite, Stomatologia,. N 5, pp.68–73.

    Google Scholar 

  39. I.A. Ivanchenko, T.I. Falkovska, L.M. Kusmenko et al. (2002) The influence of nanosized structure of biological hydrohyapatite on mechanical durability composites on its base, Nanocrystalline materials, Publisher IPM NAS of Ukraine, Kiev, pp.44–49.

    Google Scholar 

  40. Z.Z. Zuman, V.A. Filipenko, V.A. Radchenko et al. (2001) Production, properties and orthopedic use of hydrohyapatite granule, International conference “Advanced ceramics for third millennium”, Kiev, November 5-9, 2001, p. 175

    Google Scholar 

  41. K.A. Gross, V. Gross, Ch.C. Berndt (1998) Thermal analysis of amorphous phases in hydroxyapatite coatings, J.Am.Ceram.Soc.,. 81,(1), pp. 106–112.

    Article  CAS  Google Scholar 

  42. Kushchevskaja N.F. (1997) The use of ferromagnetic particles for medical application, Powder metallurgy and Metal Ceramics, N11/12, pp.116–120.

    Google Scholar 

  43. Kushchevskaja N.F. (1997) Ultrafine ferromagnetic and possible directions of their use in biomedicine for medical treatment of infection wounds, New technology in surgery, Kyiv,. pp.. 163–165

    Google Scholar 

  44. Shvets T.M., Kushchevskaja N.F., Klochko E.V. (1997) Study of ultrafine iron use for directional transportation of tirocsine to organism, Medical business, N 1, pp.73–75

    Google Scholar 

  45. Baraboy V.A., Savtsova Z.D., Shvets T.M., Kushchevskaja N.F (1996) Experimental analysis of tunor ceus exposure to highly-dispersed ferromagnetic, Experimental Oncology, 18.(4), pp.413–418.

    Google Scholar 

  46. Gvozdyak R.I., Shvets T.M., Kushchevskaja N.F. (1996) Antibacterial activity the compounds with the ultrafine iron, Microbiology, N6, pp.97–99.

    Google Scholar 

  47. Shvets T.M., Kushchevskaja N.F., Grigoryev E.S. (1997) The new materials for neurooncology, The today’s aspects for medical help, Lviv,. pp. 163–164.

    Google Scholar 

  48. Gvozdyak R.I., Shvets T.M., Kushchevskaja N.F. (1997) Magnetic field and its influence on the biologist objects, Medical business, N 5, pp. 15–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Uvarova, I. (2003). Nanostructured Materials in Medicine. State of the Art in Ukraine. In: Gogotsi, Y.G., Uvarova, I.V. (eds) Nanostructured Materials and Coatings for Biomedical and Sensor Applications. NATO Science Series, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0157-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0157-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1321-8

  • Online ISBN: 978-94-010-0157-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics