Skip to main content

On the Applications of Mössbauer Spectroscopy to the Study of Surfaces

  • Chapter
Material Research in Atomic Scale by Mössbauer Spectroscopy

Part of the book series: NATO Science Series ((NAII,volume 94))

Abstract

Mössbauer Spectroscopy is a very useful and well-known technique for the study of mainly Fe-containing materials. Most of the measurements with this spectroscopy are performed in the transmission mode, while for the study of surfaces the back-scattering mode is the preferred option. Backscattered radiation contains “resonant” and “nonresonant” radiations, the first originated as a consequence of the relaxation process, which follows resonant absorption (Mössbauer Effect), being the signal, and the second being due to the photoelectric and Compton interactions, the noise. The relaxation process is rather complex and involves both nuclear and atomic relaxations, producing conversion and Auger electrons, and gamma and X-ray photons, all of them of well defined energies, whose probability to leave the surface is related to their nature, energy and track within the solid. The detection of any of these emitted radiations provides a valuable tool to obtain spectra with varying depth resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldanskii, V.l., and Makarov E.F. (1968) in V.I. Goldanskii and R.H. Herber (eds.), Chemical Applications of Mossbauer Spectroscopy, Academic Press, New York-London, p. 1.

    Google Scholar 

  2. Stevens, J.G., Bowen, L.H., and Whatley, K.M. (1986) Mossbauer spectroscopy Anal. Chem. 58, 250–264R.

    Article  Google Scholar 

  3. Stevens J.G. and Stevens V.E. (1983) Mossbauer Effect Ref. Data J. 6, 51.

    Google Scholar 

  4. Tricker M.J., (1981) in Mossbauer Spectroscopy and its Chemical Applications, Advances in Chemistry Series, 194. J.G. Stevens and G.K. Shenoy (eds.). Am. Chem. Soc, Washington, DC, p. 63.

    Chapter  Google Scholar 

  5. Liljequist D., (1983) in Scanning Electron Microscopy III. R.M. Albrecht, I.B. Shelburne and J.D. Meakin (eds.), SEM Inc. AMF O’Hare, Chicago, p. 997.

    Google Scholar 

  6. Friedt J.M. (1984) Tech. Ing. P2 608 1.

    Google Scholar 

  7. Tatarchuk B.J, and, Dumesic J.A. (1984) in Chemistry and Physics of Solid Surfaces, Vol. 5 (Springer Ser. Chem. Phys., Vol. 35). R. Vanselow and R. Howe (eds.), Springer-Verlag, Berlin-Heidelberg, p. 65

    Google Scholar 

  8. Sawicki J.A. (1986) in Industrial Applications of the Mössbauer Effect. G.J. Long and J.G. Stevens (eds), Plenum Press, New York-London, p. 83.

    Chapter  Google Scholar 

  9. Gancedo J.R., Gracia M. and Marco J.F. (1991) CEMS methodology, Hyperfine Interactions 66, 83–93.

    Article  ADS  Google Scholar 

  10. Nomura K., Ujihira Y. and Vértes A. (1996) Applications of conversion electron Mössbauer spectrometry (CEMS), Journal of Radioanalytical and Nuclear Chemistry 202, 103–199.

    Article  Google Scholar 

  11. Gancedo J.R., Gracia M., Marco J.F. and Tabares J.A, (1998) Corrosion studies by GEMS. Facing the experiment, Hyperfine interactions 111, 83–92.

    Article  ADS  Google Scholar 

  12. Cook D. C. (1986) A gas-flow proportional counter for the Mössbauer study of surfaces between 100-K and 400-K, Hyperfine Interactions 29, 1463–1466.

    Article  ADS  Google Scholar 

  13. Weyer, G. (1976) in Mössbauer Effect Methodology, Vol 10., I.J. Gruverman and C.W. Seidel, (eds.) Plenum Press; New York, p. 301.

    Google Scholar 

  14. Gancedo J.R. and Gracia M. (1986) CEMS in non conducting surfaces with a parallel plate avalanche counter, Hyperfine Interactions 29, 1097–1100.

    Article  ADS  Google Scholar 

  15. Hanzel D., Griesbach P., Meisel W. and Gütlich P. (1992) Optimization of a conversion electron Mössbauer-spectroscopy gas-flow He/CH4 proportional counter, Hyperfine Interactions 71, 1441–1444.

    Article  ADS  Google Scholar 

  16. Sawicki J.A. and Sawicka B.D. (1983) Experimental-techniques for conversion electron Mössbauerspectroscopy, Hyperfine Interactions 13, 199–219.

    Article  ADS  Google Scholar 

  17. Amulyavichyus A.P. and Yu Davidonis R. (1986) Electron detector for Mössbauer-spectroscopy based on microchannel plates, Instrum. Exp. Tech. (Engl. transl.) 29, 590–593.

    Google Scholar 

  18. Nakagawa H., Ujihira Y. and Inaba M. (1982) Possibility of depth selective CEMS with a gas-flow proportional counter, Nucl. Instr. and Meth. 196, 573–574.

    Article  ADS  Google Scholar 

  19. Kuprin A.P. and Novakova A.A. (1992) Depth-selective Fe-57 CEMS (DCEMS) on samples with rough surfaces using a gas-flow proportional counter, Nucl. Instrum. Methods Phys, Res., Sect. B 62, 493–504.

    Article  ADS  Google Scholar 

  20. Kishimoto S., Isozumi Y. Katano R. and Takekoshi H. (1987) Operation of helium-filled proportional counter at low-temperatures (4.2-295K), Nucl. Instr. and Meth. Phys. Res. A262, 413–418.

    Article  ADS  Google Scholar 

  21. Fukumura F, Katano R, Kobayashi T., Nakanishi A. and Isozumi Y. (1991) Helium-filled proportional counter operated at low-temperatures higher than 13-K, Nucl. Instr. and Meth. Phys. Res. A301, 482–484.

    Article  ADS  Google Scholar 

  22. Fukumura K., Nakanishi A. and Kobayashi T. (1994) Hydrogen-filled proportional counter operated at low-temperatures and its application to CEMS, Nucl. Instr. and Meth. Phys. Res. B86, 387–389.

    Article  ADS  Google Scholar 

  23. Sawicki J.A., Tyliszczak T. and Gzowski O. (1981) Conversion electron Mössbauer-spectroscopy with the use of channel electron multipliers operating at low-temperatures, Nucl Instr. and Meth. 190, 433–435.

    Article  ADS  Google Scholar 

  24. Sato H. and Mitsuhashi M. (1990) A new detection system with a microchannel plate for energy-selected conversion electron Mössbauer-spectroscopy, Hyperfine Interactions 58, 2535–2540.

    Article  ADS  Google Scholar 

  25. Kajcsos Zs., Meisel W, Kuzmann E. Tosello C., Grattonm L., Vértes A., P. Gütlich and Nagy D.L. (1990) ICEMS and DCEMS study of Fe layers evaporated onto Al and Si, Hyperfine Interactions 57, 1883–1888.

    Article  ADS  Google Scholar 

  26. Meisel W. and Gütlich P. (1991) Formation, phase-composition, and transformations of Langmuir-Blodgett multilayers and monolayers containing Fe, Hyperfine Interactions 69, 815–818.

    Article  ADS  Google Scholar 

  27. Meisel W., Tippman-Krayer P., Möhwald H. and P.Gütlich P. (1991) CEMS XPS study of iron stearate Langmuir-Blodgett layers, Fresenius J. Anal. Chem. 341, 289–291.

    Article  Google Scholar 

  28. Meisel W., Faldum T., Sprenger D. and Gütlich P. (1993) Phase-composition of Fe-containing Langmuir-Blodgett layers after thermal-treatment in a reactive atmosphere, Fresenius J. Anal. Chem. 346, 110–113.

    Article  Google Scholar 

  29. Kordesch M. E., Eldridge J., Scherson D. and Hoffnann R.W. (1984) A new Mössbauer conversion electron detection technique for insitu studies on iron, J. Electroanal. Chem. 164, 393–597.

    Article  Google Scholar 

  30. Meisel W., Stumm U., Thilmann C., Gancedo J.R. and Gütlich P. (1988) A CEMS-study of the passive layer on iron and steel, Hyperfine Interactons 41, 669–672.

    Article  ADS  Google Scholar 

  31. Kobayashi T., Fukumura K., Isozumi Y.and Katano R. (1990) Magnetic-properties of corrosion products investigated by CEMS at low-temperatures near 4.2K, Hyperfine interactions 57, 1923–1928.

    Article  ADS  Google Scholar 

  32. Marco, Dávalos J., Gracia M. and Gancedo J.R. (1994) Corrosion studies of iron and its alloys by means of Fe-57 Mössbauer spectroscopy, Hyperfine Interactions 83, 111–123.

    Article  ADS  Google Scholar 

  33. Eynatten G. von, Nothhelfer K. and Dransfeld K. (1991) Light-induced chemical-reactions on interfaces between metallic iron and polymers, Hyperfine Interactions 69, 759–762.

    Article  Google Scholar 

  34. Sawicki J.A, in Industrial Applications of the Mössbauer Effect. G.J. Long and J.G. Stevens (eds.). Plenum Press, New York-London (1986) p. 83.

    Chapter  Google Scholar 

  35. Carbucicchio M., Casagrande A. and Palombarini G. (1990) Competitive reactivity of iron towards boron and silicon in surface treatments with powder mixtures, Hyperfine Interactions 57, 1769–1774.

    Article  ADS  Google Scholar 

  36. Gracia M., Marco J.F., Gancedo J.R., Exel W. and Meisel W. (2000) Surface spectroscopic study of the corrosion of ultrathin Fe-57-evaporated and Langmuir-Blodgett films in humid SO2 environments, Surf. Interface Anal. 29, 82–91.

    Article  Google Scholar 

  37. Marco J.F., Gracia M, Gancedo J.R, Agu’delo A., Exel W., Meisel W. and Hanžel D. (2001) Corrosion of ultrathin iron layers and titanium nitride coated iron, Hyperfine Interactions 134, 37–51.

    Article  ADS  Google Scholar 

  38. Proykova A. (1979) Nucl. Inst. and Meth. 160,321.

    Article  ADS  Google Scholar 

  39. Bonchev T.S.V., Minkova A., Kushev G. and Grozdanov M. (1977) Nucl, Inst. and Meth. 147,481.

    Article  ADS  Google Scholar 

  40. Liljequist D. (1978) Nucl. Inst. and Meth. 155, 529.

    Article  ADS  Google Scholar 

  41. Liljequist D. (1981) The analysis of natural Fe-57 abundance absorbers in conversion electron Mossbauerspectroscopy, Nucl. Inst. and Meth. 179, 617–620.

    Article  ADS  Google Scholar 

  42. Salvat F, and Parellada J. (1984) Theory of conversion electron mössbauer-spectroscopy (CEMS), Nucl. Inst. and Meth. Phys. Res. 229,70–84.

    Article  ADS  Google Scholar 

  43. Klingelhofer G. and Kankeleit E. (1990) Conversion electron mössbauer-spectroscopy with very lowenergy (0 to 15 ev) electrons, Hypefine Interactions 57, 1905–1910.

    Article  ADS  Google Scholar 

  44. Klingelhofer G. and Meisel W. (1990) Study of very thin oxide layers by conversion and Auger electrons, Hyperfine Interactions 57, 1911–1918.

    Article  ADS  Google Scholar 

  45. Stahl B, and Kankeleit E. (1997) A high luminosity UHV orange type magnetic spectrometer developed for depth selective Mössbauer spectroscopy, Nucl. Instrum. Methods Phys. Res., Sect. B 122, 149–161.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gancedo, J.R., Gracia, M., Marco, J.F. (2003). On the Applications of Mössbauer Spectroscopy to the Study of Surfaces. In: Mashlan, M., Miglierini, M., Schaaf, P. (eds) Material Research in Atomic Scale by Mössbauer Spectroscopy. NATO Science Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0151-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0151-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1197-9

  • Online ISBN: 978-94-010-0151-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics