New Trends in Mössbauer Spectroscopy Focused on Nanostructured Magnetic Materials

Evaluation, Theory and Methodology
  • M. A. Chuev
  • A. M. Afanas’ev
  • J. Hesse
  • O. Hupe
Part of the NATO Science Series book series (NAII, volume 94)


Mössbauer spectroscopy proved to be a powerful technique for characterisation of ironbased nanocrystalline magnetic alloys (NCMA) due to, first of all, its local character which allows one to elucidate the nature of hyperfine interactions of the iron nuclei in different crystallographic sites and to probe the nature of their immediate surroundings. Mössbauer spectra of NCMA and amorphous materials as a whole consist usually of a great number of overlapping lines which are due to a variation of hyperfme parameters from site to site, so that extracting the parameters of hyperfme structure requires a corresponding mathematical processing.


Mossbauer Spectroscopy Hyperfine Interact Hyperfine Structure Spectral Model Quadrupole Doublet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tikhonov, A.N. and Arsenin, V.Ya. (1977) Solution of Ill-Posed Problems, Winston, Washington, DC.Google Scholar
  2. 2.
    Hesse, J. and Rübartsch, H. (1974) Model independent evaluation of overlapped Mössbauer spectra, J. Phys. E: Sci. Instrum. 7, 526–532.ADSCrossRefGoogle Scholar
  3. 3.
    Mangin, P., Marshal, G., Piecuch, M. and Janot, C. (1976) Mössbauer spectra analysis in amorphous system studies, J. Phys. E: Sci. Instrum. 9, 1101–1105.ADSCrossRefGoogle Scholar
  4. 4.
    Le Caer, G. and Dubois, J.M. (1979) Evaluation of hyperfine parameter distributions from overlapped Mössbauer spectra of amorphous alloys, J. Phys. E: Sci. Instrum. 12, 1083–1090.ADSCrossRefGoogle Scholar
  5. 5.
    Wivel, C. and Mørup, S. (1981) Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra, J. Phys. E: Sci. Instrum. 14, 605–610.ADSCrossRefGoogle Scholar
  6. 6.
    Brand, R. A. and Le Caër, G. (1988) Improving the validity of Mössbauer hyperfine parameter distributions: the maximum entropy formalism and its applications, Nucl. Instrum. and Meth. B34, 272–284.ADSGoogle Scholar
  7. 7.
    Miglierini, M. and Grenèche, J.-M. (1997) Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: I. The fitting model for the Mössbauer spectra, J. Phys.: Condens. Matter 9, 2303–2319ADSCrossRefGoogle Scholar
  8. 8.
    Miglierini, M., Skorvanek, I, and Grenèche, J.-M. (1998) Microstructure and hyperfine interactions of the Fe73.5Nb4.5Cr5CuB16 nanocrystalline alloys: Mössbauer effect temperature measurements, J. Phys.: Condens. Matter 10, 3159–3176.ADSCrossRefGoogle Scholar
  9. 9.
    Suzuki, K. and Cadogan, J.M. (1998) Random magnetocrystalline anisotropy in two-phase nanocrystalline systems, Phys.Rev. B 58, 2730–2739.ADSCrossRefGoogle Scholar
  10. 10.
    Hernando, A. (1999) Magnetic properties and spin disorder in nanocrystalline materials, J. Phys.: Condens. Matter 11, 9455–9482ADSCrossRefGoogle Scholar
  11. 11.
    Kemény, T., Kaptás, D., Balogh, J., Kiss, L.F., Pusztai, T. and Vincze, I. (1999) Microscopic study of the magnetic coupling in a nanocrystalline soft magnet, J. Phys. Condens. Matter 11, 2841–2847.ADSCrossRefGoogle Scholar
  12. 12.
    Balogh, J., Bujdoso, L., Kaptás, D., Kemény, T., Vincze, I., Szabo, S. and Beke, D. (2000) Mössbauer study of the interface of iron nanocrystallites, Phys. Rev. B 61, 4109–4116.ADSCrossRefGoogle Scholar
  13. 13.
    Miglierini, M., Schaaf, P., Skorvanek, I., Janickovic, D., Carpene, E. and Wagner, S. (2001) Laserinduced structural modifications of FeMoCuB metallic glasses before and after transformation into a nanocrystalline state, J. Phys.: Condens. Matter 13, 10359–10369.ADSCrossRefGoogle Scholar
  14. 14.
    Afanas’ev, A.M. and Chuev, M.A. (1995) Discrete forms of Mössbauer spectra, JETT 3 80, 560–567.ADSGoogle Scholar
  15. 15.
    Hupe, O., Bremers, H., Hesse, J., Afanas’ev, A.M. and Chuev, M.A. (1999) Structural and magnetic information about a nanostructured ferromagnetic FeCuNbB alloy by novel model independent evaluation of Mössbauer spectra, Nanostructured Mater. 12, 581–584.CrossRefGoogle Scholar
  16. 16.
    Hupe, O., Chuev, M.A., Bremers, H., Hesse, J., and Afanas’ev, A.M. (1999) Magnetic properties of nanostructured ferromagnetic FeCuNbB alloys revealed by a novel model independent evaluation of Mössbauer spectra, J. Phys.: Cond. Matter 11, 10545–10556.ADSCrossRefGoogle Scholar
  17. 17.
    Chuev, M.A., Hupe, O., Bremers, H., Hesse, J., and Afanas’ev, A.M. (2000) A novel method for evaluation of complex Mössbauer spectra demonstrated on nanostructured ferromagnetic FeCuNbB alloys, Hyperfine Interact. 126, 407–410.ADSCrossRefGoogle Scholar
  18. 18.
    Wickman, H.H. (1966) Mössbauer Paramagnetic Hyperfme Structure, in I.J. Gruverman (ed.), ‘Mössbauer effect methodology’, v.2, Plenum Press, New York, pp. 39–66.Google Scholar
  19. 19.
    Reid, N.M.K., Dickson, D.P.E. and Jones, D.H. (1990) A study of the parametrisation of the uniaxial model of superparamagnetic relaxation, Hyperfine Interact. 56, 1487–1490.ADSCrossRefGoogle Scholar
  20. 20.
    Mørup, S. (1994) Superferromagnetic nanostructures, Hyperfine Interact. 90, 171–185.ADSCrossRefGoogle Scholar
  21. 21.
    Mørup, S. and Tronc, E. (1994) Superparamagnetic relaxation of weakly interacting particles, Phys. Rev. Lett. 72,3278–3281.ADSCrossRefGoogle Scholar
  22. 22.
    Tronc, E., Prené, P., Jolivet, J.P., d’Orazio, F., Lucari, F., Fiorani, D., Godinho, M., Cherkaoui, R., Noguès, M. and Dormann, J.L. (1995) Magnetic behaviour of γ-Fe2O3 nanoparticles by Mössbauer spectroscopy and magnetic measurements, Hyperfine Interact. 95, 129–148.ADSCrossRefGoogle Scholar
  23. 23.
    Dormann, J.L., D’Orazio, F., Lucari, F., Tronc, E., Prené, P., Jolivet, J.P., Fiorani, D., Cherkaoui, R. and Noguès, M. (1996) Thermal variation of the relaxation time of the magnetic moment of γ-Fe2O3nanoparticles with interparticle interactions of various strengths, Phys. Rev. B 53, 14291–14297.ADSCrossRefGoogle Scholar
  24. 24.
    Tronc, E., Ezzir, A., Cherkaoui, R., Chanéac, C., Noguès, M., Kachkachi, H., Fiorani, D., Testa, A.M., Grenèche, J.-M. and Jolivet, J.P. (2000) Surface-related properties of γ-Fe2O3 nanoparticles, J. Magn. Magn. Mater. 221, 63–79.ADSCrossRefGoogle Scholar
  25. 25.
    Afanas’ev, A.M. and Chuev, M.A. (2001) New relaxation model for superparamagnetic particles in Mössbauer spectroscopy, JETP Lett. 74, 107–110.ADSCrossRefGoogle Scholar
  26. 26.
    Hesse, J., Graf, T., Kopcewicz, M., Afanas’ev, A.M. and Chuev, M.A. (1988) Mössbauer experiments in radio frequency magnetic fields: A method for investigations of nanostructured soft magnetic materials, Hyperfine Interact. 113, 499–506.ADSCrossRefGoogle Scholar
  27. 27.
    Afanas’ev, A.M., Chuev, M.A. and Hesse, J. (2000) Relaxation-stimulated resonances in Mössbauer spectra under rf magnetic field excitation, J. Phys.: Cond. Matter 12, 623–635.ADSCrossRefGoogle Scholar
  28. 28.
    Néel, L. (1949) Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites, Ann. Geophys. 5, 99–136.Google Scholar
  29. 29.
    Rancourt, D.G. (1996) Analytical methods for Mössbauer spectral analysis of complex materials, in G.J. Long and F. Grandjean (eds.), ‘Mössbauer spectroscopy applied to magnetism and materials science’, v.2, Plenum Press, New York, pp. 105–124.Google Scholar
  30. 30.
    Afanas’ev, A.M., Chuev, M.A. and Hesse, J. (1997) Relaxation Mössbauer spectra under rf magnetic field excitation, Phys. Rev. B 56, 5489–5499.ADSCrossRefGoogle Scholar
  31. 31.
    Afanas’ev, A.M., Chuev, M.A. and Hesse, J. (1998) Collapse in the model of the non-interacting Stoner-Wohlfarth particles, JETP 86, 983–992.ADSCrossRefGoogle Scholar
  32. 32.
    Afanas’ev, A.M., Chuev, M.A. and Hesse, J. (1999) Mössbauer spectra of Stoner-Wohlfarth particles in rf fields in a modified relaxation model, JETP 89, 533–546.ADSCrossRefGoogle Scholar
  33. 33.
    Afanas’ev, A.M., Chuev, M.A. and Hesse, J. (2001) Shift of relaxation-stimulated resonances in Mössbauer absorption spectra with applying of static magnetic field, JETP Lett. 73, 519–523.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. A. Chuev
    • 1
  • A. M. Afanas’ev
    • 1
  • J. Hesse
    • 2
  • O. Hupe
    • 2
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesRussia
  2. 2.Institut für Metallphysik und Nukleare FestkörperphysikTechnische UniversitätGermany

Personalised recommendations