Nuclear Resonance Inelastic Scattering of Synchrotron Radiation in Oxides With Colossal Magnetoresistance

  • A. I. Rykov
  • K. Nomura
  • T. Mitsui
  • M. Seto
Part of the NATO Science Series book series (NAII, volume 94)


Phonon anomalies near the critical temperature are studied in a number of itinerant ferromagnets, including (Fe,Co)-based perovskite-related oxides, the 57Fe-doped ruthenates and the manganite La0.7Sr0.3MnO3. The partial 57Fe phonon densities of states (DOS) in these oxides were derived from the resonant nuclear inelastic scattering spectra. The spectra were measured with energy resolution of 2.5meV by detecting the 6.3 keV Fe Ka X-rays following after Mössbauer effect on 57Fe transition excited by monochromatized 14.41 keV synchrotron radiation. The changes in the 57Fe phonon DOS g(E) are observed at cooling across T c . In the perovskites Sr2FeCoO6-δ and SrBaFeCoO6-δ, the lowest energy peak near 15 meV develops below Tc. We attribute this change to the narrowing of the phonon bands at the onset of the transport coherence. The non-metallic brownmillerite SrCaFeCoO5 exhibits a peak in the much lower energy region of g (E), In the g(E)/E 2 curve, a strong low-energy deviation from Debye behavior (g(E)/E 2= const) appears at 7 meV. This peak enlarges dramatically the vibrational amplitudes for brownmillerites relative to perovskites.


Phonon Density Boson Peak Nuclear Inelastic Scattering Phonon Anomaly Brownmillerite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobayashi K.-I., Kimura T., Sawada H., Terakura K., and Tokura Y. (1998) Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure, Nature 395, 677–680.ADSCrossRefGoogle Scholar
  2. 2.
    Maignan A., Martin C., Nguyen N., and Raveau B. (2001) Magnetoresistance in the ferromagnetic metallic perovskite SrFe1-xCo8O3, Solid State Sciences 3, 57–63.ADSCrossRefGoogle Scholar
  3. 3.
    Ramirez A.P., Cava R.J., and Krajewski J. (1997) Colossal magnetoresistance in Cr-based chalcogenide spinels, Nature 386, 156–158.ADSCrossRefGoogle Scholar
  4. 4.
    Algarabel P.A., Morellon L., De Teresa J.M., Blasco J., Garcia J., Ibarra MR., Hernandez T., Plazaola F., Barandiaran J.M. (2001), Mössbauer spectroscopy in Sr2FeMoO6, double perovskite, Journal of magnetism and magnetic materials 226-230, 1089–1091.ADSCrossRefGoogle Scholar
  5. 5.
    Ballcells Ll., Navarro J., Bibes M., Roig A., Martinez B., and Fontcuberta J., (2001), Cationic ordering control of magnetization in Sr2FeMoO6. Applied Physics Letters 78, 781–783.ADSCrossRefGoogle Scholar
  6. 6.
    Navarro J., Frontera C, Balcells Ll., Martinez B., and Fontcuberta J. (2001) Raising the Curie temperature in Sr2FeMoO6 double perovskite by electron doping, Physical Review B 64, 092411, 1-4.ADSCrossRefGoogle Scholar
  7. 7.
    Moritomo Y., Xu S., Machida A., Akimoto T, Nishibori E., Takata M., Sakata M., Ohoyama K., (2001) Crystal and magnetic structure of conducting double perovskite Sr2FeMoO6, J. Phys. Soc. Jpn. 69 1723.ADSCrossRefGoogle Scholar
  8. 8.
    Iliev M.N., Litvinchuk A.P., Lee H.-G., Chen C.L., Dezaneti M.L., Chu C.W., Ivanov V.G., Abrashev M.V. and Popov V.N.(1999) Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition, Physical Review B 59, 364–368.ADSCrossRefGoogle Scholar
  9. 9.
    Chumakov A., and Riiffer R, (1998) Nuclear inelastic scattering, Hyperfine Interactions 113, 59–79.ADSCrossRefGoogle Scholar
  10. 10.
    Watahiki M., Metoki N, Suzuki J.-I., Oikawa K.-I., Nie J., Tachiki M., and Yamada Y. (2001) Small-angle neutron scattering study on ferromagnetic correlation in (La,Tb)2/3Ca1/3MnO3, J. Phys, Soc. Jpn. 70, 1090.ADSCrossRefGoogle Scholar
  11. 11.
    Pyka N., Reichardt W., Pintschovius L., Engel G., Rossat-Mignod J., and Henry J. Y. (1993) Superconductivity-induced phonon softening in YBa2Cu3O7 observed by inelastic neutron scattering, Physical Review Letters 70, 1457–1460.ADSCrossRefGoogle Scholar
  12. 12.
    Limonov M.F., Rykov A.I., Tajima S., and Yamanaka A. (2000) Superconductivity-induced effects on phononic and electronic Raman scattering in twin-free YBa2Cu3O7-8 single crystals, Physical Review B 61, 12412–12419.ADSCrossRefGoogle Scholar
  13. 13.
    Boris A.V., Kovaleva N.N., Bazenov A.V., van Bentum P.J.M., Rasing Th., Cheong S.-W., Samoilov A.V., and Yeh N.-C. (1999) Infrared studies of a La0.67Ca0.33MnO3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet, Physical Review B 59, R697–R700.ADSCrossRefGoogle Scholar
  14. 14.
    Nomura K., Tokumitsu K., Hayakawa T., and Homonnay Z. (2000) The influence of mechanical treatment on the absorption of CO2 by perovskite oxides, J. Radioanal. Nucl. Chem. 246, 69–77.CrossRefGoogle Scholar
  15. 15.
    Kohn V.G. and Chumakov A.I. (2000) DOS: Evaluation of phonon density of states from nuclear resonant inelastic absorption, Hyperfine Interaction 125, 205–221.CrossRefGoogle Scholar
  16. 16.
    Sturhahn W. (2000) CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data, Hyperfine Interactions 125 149–172.CrossRefGoogle Scholar
  17. 17.
    Seto M., Kobayashi Y., Kitao S., Haruki R., Mitsui T., Yoda Y, Nasu S., and Kikuta S. (2000) Local vibrational densities of states of dilute Fe atoms in Al and Cu metals, Physical Review B 61 11420–11424.ADSCrossRefGoogle Scholar
  18. 18.
    Rykov A., Caignaert V., Nguyen N., Maignan A., Suard E., and Raveau B. (1993) The complex distribution of iron in the (Y,Ca)Ba2(Cu,Fe)3O6+y cuprate. Physica C205 63–77.ADSGoogle Scholar
  19. 19.
    Asai K., Yoneda A., Yokokura O., Tranquada J. M., Shirane G., and Kohn K. (1998) Two spin-state transitions in LaCoO3, Journal of the Physical Society of Japan 67 290–296.ADSCrossRefGoogle Scholar
  20. 20.
    Reichardt W., Bennington S.M. (1999) Lattice vibrations in La 1-x Sr x MnO 3, ISIS Experimental Report, Rutherford Appleton Laboratory.Google Scholar
  21. 21.
    Brand R.A., Coddens G., Chumakov A. I., Calvayrac Y. (1999) Partial phonon density of states of Fe in an icosahedral quasicrystal Al62Cu25.5 57Fe12.5 by inelastic nuclear-resonant absorption of 14.41-keV synchrotron radiation, Physical Review B 59 R14145–R14148.ADSCrossRefGoogle Scholar
  22. 22.
    Chumakov A.I., Rüffer R., Baron A.Q.R., Grunsteudel H., and Grünsteudel H.F. (1996) Temperature dependence of nuclear inelastic absorption of synchrotron radiation in α-57Fe, Phys. Rev. B 54, R9596.ADSCrossRefGoogle Scholar
  23. 23.
    Sturhahn W., Toellner T.S., Alp E.E., Zhang X., Ando M., Yoda Y., Kikuta S., and Seto M. (1995) Phonon density of states measured by inelastic resonant scattering, PhysicalReview Letters 74 3832–3835.ADSCrossRefGoogle Scholar
  24. 24.
    Rykov A., Caignaert V., and Raveau B. (1994) Quadrupole interactions and vibrational anisotropy of tetrahedral Fe(III) in 123 derivative LnSr2Cu2Ga1-xFe8 (Ln=Y,Ho) J. Solid State Chem. 109, 295–306.ADSCrossRefGoogle Scholar
  25. 25.
    Rykov A., Caignaert V., Van Tendeloo G., Greneche J. M., Studer F., Nguyen N., Ducouret A., Bonville P., and Raveau B. (1994) Structural aspects and antiferromagnetic ordering in the 123-derivative LnSr2Cu2Ga1-xFex (Ln=Y, Ho) Journal of Solid Stale Chemistry 113, 94–108.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • A. I. Rykov
    • 1
  • K. Nomura
    • 1
  • T. Mitsui
    • 2
  • M. Seto
    • 3
  1. 1.School of EngineeringThe University of TokyoBunkyo-ku, HongoJapan
  2. 2.Japan Atomic Energy Research InstituteMikazuki, Sayo, HyogoJapan
  3. 3.Research Reactor InstituteKyoto UniversitySennan-gun, OsakaJapan

Personalised recommendations