Skip to main content

Mechanosynthesis of Nanostructured Materials

  • Chapter
  • 289 Accesses

Part of the book series: NATO Science Series ((NAII,volume 94))

Abstract

In Lilliput, Gulliver noted that “there are some laws and customs in this Empire very peculiar” [1], an observation which might be appropriate for nanophased materials too. Nanophased materials behave indeed differently from their macroscopic counterparts because their characteristic sizes are smaller than the characteristic length scales of physical phenomena occurring in bulk materials. Hereafter, we shall focus on consolidated nanomaterials or on powdered materials whose particle sizes are large as compared to the mean crystallite size which is required to be lower than 100 nm, a conventional limit used for structural materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swift, J. (1726) Gulliver’s travels, http://www.on-line.literature.com/swift/gulliver/,chapter6.

  2. Gleiter, H. (2000) Nanostructured materials: basic concepts and microstructure, Acta mater. 48, 1–29.

    Article  Google Scholar 

  3. Caro, A. and Van Swygenhoven, H. (2001) Grain boundary and triple junction enthalpies in nanocrystalline metals, Phys. Rev. B 63, 134101 (5).

    Article  ADS  Google Scholar 

  4. Suryanarayana, C. (2001) Mechanical alloying and milling, Progr. Mater. Sci. 46, 1–184.

    Article  Google Scholar 

  5. Martin, G. and Bellon, P. (1996) Driven Alloys, Solid State Physics 50, 189–331.

    Article  MATH  Google Scholar 

  6. Chaffron, L., Le Bouar, Y. and Martin, G. (2001) Driven phase transformations: a useful concept for wear studies ?, C.R. Acad. Sci. Paris Série IV 2, 749–759.

    Google Scholar 

  7. Gaffet, E. et al. (1999) Some recent developments in mechanical activation and mechanosynthesis, J. Mater. Chem. 9, 305–314.

    Article  Google Scholar 

  8. Shingu, P.II., Ishihara, K.N. and Otsuki, A. (1995) Mechanical alloying and chaos, Mater. Sci. Forum 179-181, 5–10.

    Article  Google Scholar 

  9. Le Caër, G., Ziller, T., Delcroix, P. and Bellouard, C. (2000) Mixing of iron with various metals by high-energy ball-milling of elemental powder mixtures, Hyp. Int. 130,45–70.

    Article  ADS  Google Scholar 

  10. Kwon, Y.S., Gerasimov, K.B. and Yoon, S.K. (2002) Ball temperatures during mechanical annoying in planetary mills, J. Alloys Comps, in press.

    Google Scholar 

  11. Cabrera, A.F. and Sanchez, F.H. (2002) Mossbauer study of ball-milled Fe-Ge alloys. Phys. Rev. B 65, 094202–(9).

    Article  ADS  Google Scholar 

  12. Delcroix, P., Ziller, T., Bellouard, C. and Le Caër, G. (2001) Mechanical alloying of an Fe0.30Cr.0.70 alloy from elemental powders, Mater. Sci. Forum 360-362, 329–336.

    Article  Google Scholar 

  13. Dubiel, S.M and Inden, G. (1987) On the miscibility gap in the Fe-Cr system: a Mössbauer study on long term annealed alloys, Z. Metallkde. 78, 544–549.

    Google Scholar 

  14. Ziller, T., Le Caër, G., Isnard, O., Cénédèse, P. and Fultz, B. (2002) Metastable and transient states of chemical ordering in Fe-V nanocrystalline alloys, Phys. Rev. B 65, 024204–(14).

    Article  ADS  Google Scholar 

  15. Keblinski, P., Wolf, D., Phillpot, S.R. and Gleiter, H. (1999) Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation, Scripta mater. 41, 631–636.

    Article  Google Scholar 

  16. Van Swygenhoven, H. (2002) Grain boundaries and dislocations, Science 296, 66–67.

    Article  Google Scholar 

  17. Li, D.X., Ping, D.H., Huang, J.Y., Hu, Y.D. and Ye, H.Q. (2000) Microstructure and composition analysis of nanostructured materials using HREM and FEG-TEM, Micron 31, 581–586.

    Article  Google Scholar 

  18. Murayama, VI., Howe, J.M., Hidaka, H. and Takaki, S. (2002) Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science 295, 2433–2435.

    Article  ADS  Google Scholar 

  19. Alonso, T., Yinong, L., Dallimore M.P. and MeCormick, P.G. (1993) Low temperature reduction of SmCl3 during mechanical milling, Scripta metall. mater. 29, 55–58.

    Article  Google Scholar 

  20. Barraud, E., Bégin-Colin, S. and Le Caër, G. (2002) Nanorods of HfB2 and of ZrB2 from mechanically-activated powder mixtures, in preparation.

    Google Scholar 

  21. Girot, T., Devaux, X., Bégin-Colin, S., Le Caër, G. and Mocellin, A. (2001) Initial stages of the transformation of single-crystal anatase particles during high-energy ball-milling, Phil. Mag. A 81, 489–499.

    Article  ADS  Google Scholar 

  22. Girot, T. (2001) Ph.D. thesis, Institut National Polytechnique de Lorraine, Nancy.

    Google Scholar 

  23. Fischer, S.F., Kaul, S.N. and Kronmüller, H. (2002) Critical magnetic properties of disordered polycrystalline Cr75Fe25and Cr70Fe30 alloys, Phys. Rev. B 65, 064443–(12).

    Article  ADS  Google Scholar 

  24. Delcroix, P., Bellouard, C. and Le Caër, G. (2002) Stationary unmixed structure of mechanically alloyed and of ball-milled Fe0.30Cr0.70, in preparation.

    Google Scholar 

  25. Enrique, R.A. and Bellon, P. (2001) Compositional patterning in immiscible alloys driven by irradiation, Phys. Rev. B 63, 134111(12).

    Article  ADS  Google Scholar 

  26. Fultz, B. and Anthony, L. (1989) Vacancy trapping on lattice with different coordination numbers, Philos. Mag. Lett. 59, 237–241.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Le Caër, G., Begin-Colin, S., Delcroix, P. (2003). Mechanosynthesis of Nanostructured Materials. In: Mashlan, M., Miglierini, M., Schaaf, P. (eds) Material Research in Atomic Scale by Mössbauer Spectroscopy. NATO Science Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0151-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0151-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1197-9

  • Online ISBN: 978-94-010-0151-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics