Smbe Grown Uniformly And Selectively Doped Si:Er Structures For Leds And Lasers

  • Z. F. Krasilnik
  • V. Ya. Aleshkin
  • B. A. Andreev
  • O. B. Gusev
  • W. Jantsch
  • L. V. Krasilnikova
  • D. I. Kryzhkov
  • V. G. Shengurov
  • V. B. Shmagin
  • N. A. Sobolev
  • M. V. Stepikhova
  • A. N. Yablonsky
Chapter
Part of the NATO Science Series book series (NAII, volume 93)

Abstract

In recent years an increasing attention has been focused on the investigation of optically active Er centers in Si in view of great application possibilities opened for this material. The intra-center emission of Er3+ ions occurs at a wavelength of 1.54 urn where silica based optical fibers are known to have minimum loss and low dispersion. It makes Si:Er attractive as a light emitting source for fiber optics communication systems. Moreover, the realization of efficient light emitters on Si will offer new opportunities in the application of Si-based optoelectronic devices for large-scale integrated circuits. The methods commonly used for incorporating Er into silicon are ion implantation [1] and molecular beam epitaxy (MBE) [4]. In this contribution we present an original method of sublimation MBE (SMBE) [7] and describe its capabilities for growth of effective light-emitting Si:Er-based structures including light-emitting diodes operating at room temperature. Along with the SMBE grown uniform Si:Er layers, the photoluminescence (PL) efficiency of which is comparable with or even higher than that of the ion- implanted layers, we consider here a novel type of Er-doped structures — the selectively doped Si/Si:Er/Si/Si:Er…/Si multilayer structures with enhanced photo- and electroluminescence (EL) efficiency [9]. Finally, we provide the results of simulations for the parameters of real laser-type structures and discuss the prospects of achieving stimulated emission on their basis.

Keywords

Boron GaAs Resis Refraction Erbium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Polman, J. Appl. Phys., 82 (1997) 1. ADSCrossRefGoogle Scholar
  2. [2]
    S. Coffa, G. Franzo, and F. Priolo, MRS Bulletin, 23 (1998) 25.Google Scholar
  3. [3]
    W. Jantsch, S. Lanzerstorfer, L. Palmetshofer et al. J. of Lumin., 80 (1999) 9. CrossRefGoogle Scholar
  4. [4]
    J. Stimmer, A. Reittinger, E. Neufeld et al. Thin Solid Films, 294 (1996) 220.CrossRefGoogle Scholar
  5. [5]
    R. Serna, Jung H. Shin, M. Lohmeier et al. J. Appl. Phys. 79 (1996) 2658.ADSCrossRefGoogle Scholar
  6. [6]
    W.-X. Ni, K.B. Joelsson, C.-X. Du et al. Appl. Phys. Lett., 70 (1997) 3383.ADSCrossRefGoogle Scholar
  7. [7]
    V.P. Kuznetsov and R.A. Rubtsova Semiconductors 34 (2000) 502.ADSCrossRefGoogle Scholar
  8. [8]
    A.Yu. Andreev, B. A. Andreev et al. Semiconductors 33 (1999) 131 ADSCrossRefGoogle Scholar
  9. [9]
    M.V. Stepikhova, B.A. Andreev et al. Thin Solid Films, 381 (2001) 164.ADSCrossRefGoogle Scholar
  10. [10]
    H. Przybylinska, W. Jantsch et al. Phys. Rev. B, 54 (1996) 2532.ADSCrossRefGoogle Scholar
  11. [II]
    M. Stepikhova, B. Andreevet al. Solid State Phenomena, 82-84 (2002) 629.CrossRefGoogle Scholar
  12. [12]
    B.A. Andreev, Z.F. Krasil’nik et al. Physics of the Solid State, 43 (2001) 1012.ADSCrossRefGoogle Scholar
  13. [13]
    F. Priolo, D. Franzo et al. Phys. Rev. B, 57 (1998) 4443 ADSCrossRefGoogle Scholar
  14. [14]
    O.B. Gusev, M.S. Bresler et al. Phys. Rev. B, 64 (2001) 075302.ADSCrossRefGoogle Scholar
  15. [15]
    M, Stepikhova, B. Andreev, et al, Mat. Sci. & Engin. B, 81 (2001) 67.CrossRefGoogle Scholar
  16. [16]
    B.A. Andreev, W. Jantsch et al. 26th Int. Conf. on Phys. Semicond. Edinburgh, Scotland, UK, 29 July — 2 August 2002, Book of abstracts, Part III, p. 125, in print.Google Scholar
  17. [17]
    E.N. Morozova, et al. Bulletin of RAS. Ser. Phys., 67 (2003) in print (in Russian).Google Scholar
  18. [18]
    V.B. Shmagin et al. Physica B: Physics of Condensed Matter, 308-310 (2001) 361.ADSCrossRefGoogle Scholar
  19. [19]
    B. Andreev, V. Chalkov, O. Gusev et al. Nanotechnology, 13 (2002) 97.ADSCrossRefGoogle Scholar
  20. [20]
    N.Q. Vinh et al. Physica B: Physics of Condensed Matter, 308-310 (2001) 340.ADSCrossRefGoogle Scholar
  21. [21]
    A. Dargys, J. Kundrotas, Handbook on physical properties of Ge, Si, GaAs and InP, Vilnius, Science and Encyclopedia Publishers, 1994.Google Scholar
  22. [22]
    V. G. Shengurov, S. P. Svetlov et al. Semiconductors 36 (2002) 625.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Z. F. Krasilnik
    • 1
  • V. Ya. Aleshkin
    • 1
  • B. A. Andreev
    • 1
  • O. B. Gusev
    • 2
  • W. Jantsch
    • 3
  • L. V. Krasilnikova
    • 1
  • D. I. Kryzhkov
    • 4
  • V. G. Shengurov
    • 1
  • V. B. Shmagin
    • 1
  • N. A. Sobolev
    • 2
  • M. V. Stepikhova
    • 1
  • A. N. Yablonsky
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of Sciences GSP-105Nizhny NovgorodRussia
  2. 2.Ioffe Physico-Technical Institute Russian Academy of SciencesSt.-PetersburgRussia
  3. 3.Institut für Halbleiterphysik, Johannes-Kepler- Universität,LinzAustria
  4. 4.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations