Terahertz Silicon Lasers

Intracentre optical pumping
  • S. G. Pavlov
  • H.-W. Hübers
  • M. H. Rümmeli
  • J. N. Hovenier
  • T. O. Klaassen
  • R. Kh. Zhukavin
  • A. V. Muravjov
  • V. N. Shastin
Chapter
Part of the NATO Science Series book series (NAII, volume 93)

Abstract

Silicon lasers based on the optical intracentre transitions of shallow impurities emit in the terahertz frequency range (1.2–6.6 THz or, alternatively, in wavelengths: 40–230 urn) [1]. The population inversion schemes of the lasers are realized under the conditions of optical pumping of the group V impurity centres at low Si lattice temperatures [2]. Two types of optical pumping have been already demonstrated successfully in order to get a laser emission from silicon. First one uses a mid-infrared CO2 laser, which quantum energy (117–134 meV) is sufficient to photoionize carriers bound to the impurity centres from the localized ground states into the conduction band. Laser action under CO2 laser pumping has been obtained from silicon doped by phosphor (Si:P) [4], bismuth (Si:Bi) [5], and antimony (Si:Sb) [7].

Keywords

Attenuation Helium Polyethylene Bismuth Sapphire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pavlov, S.G., Hübers, H.-W., Orlova, E.E., Zhukavin, R.Kh., Riemann, H., Nakata, H., and Shastin, V. N. (2003) Optically pumped terahertz semiconductor bulk lasers, Physica Status Solidi (b), in press.Google Scholar
  2. 2.
    Orlova, E.E., Zhukavin, R.Kh., Pavlov, S.G., and Shastin, V.N. (1998) Far infrared active media based on the shallow impurity states transitions in silicon, Physica Status Solidi (b) 210, 859–863.ADSCrossRefGoogle Scholar
  3. 3.
    Hübers, H.-W., Pavlov, S.G., Rümmeli, M.H., Zhukavin, R.Kh., Orlova, E.E., Riemann, H., and Shastin, V.N. (2001) Terahertz emission from silicon doped by shallow impurities, Physica B 308-310, 232–235.ADSCrossRefGoogle Scholar
  4. 4.
    Pavlov, S.G., Zhukavin, R.Kh., Orlova, E.E., Shastin, V.N., Kirsanov, A.V., Hübers, H.-W., Auen, K., and Riemann, H. (2000) Stimulated emission from donor transitions in silicon, Phys. Rev. Lett. 84, 5220–5223.ADSCrossRefGoogle Scholar
  5. 5.
    Pavlov, S.G., Hübers, H.-W., Rümmeli, M.H., Zhukavin, R.Kh., Orlova, E.E., Shastin, V.N., and Riemann, H. (2002) Far-infrared stimulated emission from optically excited bismuth donors in silicon, Appl. Phys. Lett. 80, 4717–4719.ADSCrossRefGoogle Scholar
  6. 6.
    Hübers, H.-W., Pavlov, S.G., Greiner-Bär, M., Rümmeli, M.H., Kimmitt, M.F., Zhukavin, R.Kh., Riemann, H., and Shastin V.N. (2002) Terahertz Emission Spectra of Optically Pumped Silicon Lasers, Physica Status Solidi (b) 233, 191–196.ADSCrossRefGoogle Scholar
  7. 7.
    Pavlov, S.G., Hübers, H.-W., Riemann, H., Zhukavin, R.Kh., Orlova, E.E., and Shastin, V.N. (2002) Terahertz optically pumped Si:Sb laser, J. Appl. Phys., in press, scheduled for the issue on 1st Dec. 2002.Google Scholar
  8. 8.
    Shastin, V.N., Zhukavin, R.Kh., Orlova, E.E., Pavlov, S.G., Rümmeli, M.H., Hübers, H.-W., Hovenier, J.N., Klaassen, T.O., Riemann, H., Bradley, I.V., and van der Meer, A.F.G. (2002) Stimulated THz emission from group V donors in silicon under intracenter photoexcitation, Appl. Phys. Lett. 80, 3512–3514.ADSCrossRefGoogle Scholar
  9. 9.
    Klaassen, T.O., Hovenier, J.N., Zhukavin, R.Kh., Gaponova, D.M., Muravjov, A.V., Orlova, E.E., Shastin, V.N., Pavlov, S.G., Hübers, H.-W., Riemann, H., and van der Meer, A.F.G. (2002) The emission spectra of optically pumped Si-based THz lasers, in J.M. Chamberlain et al. (eds) Proc. of the 2002 IEEE Tenth Int. Conf. on Terahertz Electronics, IEEE Cat. No. 02EX621, pp. 89–92.Google Scholar
  10. 10.
    Gershenzon, E.M., Mel’nikov, A.P., and Rabinovich, R.I. (1985) H-like impurity centers, molecular complexes and electron delocalization in semiconductors, in A.L. Efros and M. Pollak (eds.) Electron-Electron Interactions in Disordered Systems, Elsevier Science Publishers, Amsterdam, pp. 483–554.CrossRefGoogle Scholar
  11. 11.
    Ramdas, A.K., and Rodriguez, S. (1981) Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors, Reports on Progress in Physics 44, 1297–1387.ADSCrossRefGoogle Scholar
  12. 12.
    Clauws, P., Broeckx, J., Rostaert, E., and Vennik, J. (1988) Oscillator strengths of shallow impurity spectra in germanium and silicon, Phys. Rev. B 38, 12377–12382.ADSCrossRefGoogle Scholar
  13. 13.
    Gres’kov, I.M., Smirnov, B.V., Sobolev, S.P., Stuk, A.A., and Kharchenko, V.A. (1978) Influence of growth defects on the electrical properties of radiation-doped silicon, Soviet Physics — Semiconductors 12, 1118–1120.Google Scholar
  14. 14.
    Onton, A., Fisher, P., and Ramdas, A.K. (1967) Anomalous width of some photoexcitation lines of impurities in silicon, Phys. Rev. Lett. 19, 781–783.ADSCrossRefGoogle Scholar
  15. 15.
    Mayur, A. J., Dean Sciacca, M., Ramdas, A. K., and Rodriguez, S. (1993) Redetermination of the valleyorbit (chemical) splitting of the Is ground state of group-V donors in silicon, Phys. Rev. B 48, 10893–10898.ADSCrossRefGoogle Scholar
  16. 16.
    Griffin, A., and Carruthers, P. (1963) Thermal Conductivity of Solids IV: Resonance Fluorescence Scattering of Phonons by Donor Electrons in Germanium, Phys. Rev. 131, 1976–1995.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • S. G. Pavlov
    • 1
  • H.-W. Hübers
    • 1
  • M. H. Rümmeli
    • 1
  • J. N. Hovenier
    • 2
  • T. O. Klaassen
    • 2
  • R. Kh. Zhukavin
    • 3
  • A. V. Muravjov
    • 3
  • V. N. Shastin
    • 3
  1. 1.Institute of Space Sensor Technology and Planetary ExplorationGerman Aerospace CentreBerlinGermany
  2. 2.Delft University of TechnologyGA DelftThe Netherlands
  3. 3.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations