Optical Gain From Silicon Nanocrystals A critical perspectives

  • A. Polman
  • R. G. Elliman
Part of the NATO Science Series book series (NAII, volume 93)


It has generally been considered impossible to fabricate a silicon laser. The reason being that -due to its indirect bandgap- silicon has a small cross-section for stimulated emission. As a result, optical losses due to free carrier absorption are dominant. It has been proposed that Si nanocrystals offer a solution to this problem. The optical properties of silicon nanocrystals are quite well understood. This is the result of extensive research over the past ten years on porous Si as well as on Si nanocrystals embedded in an SiO2 matrix. It is generally found that well-prepared and passivated Si nanocrystals exhibit photoluminescence in the wavelength range between 500 and 1100 nm. The luminescence is attributed to the recombination of quantum-confined excitons, the emission energy thus being strongly dependent on the nanocrystal size. SiO2 is the ideal matrix for Si nanocrystals as it can passivate dangling bonds that may cause non-radiative quenching. Indeed, many of the optical characteristics of Si nanocrystals in SiO2 prepared by different methods, as well as oxidized porous Si, are very similar. The radiative recombination process can be entirely understood assuming a “classical” model of recombination of excitonic singlet and triplet states of the excited Si nanocrystals. In this model, the optical transition is indirect in nature, and has a relatively small cross- section. In recent years, several applications of Si nanocrystals have been explored, and include light-emitting diodes,1,2 non-volatile memories,3,4 and sensitized optical amplifiers.5,6 The fabrication of an optical amplifier or laser based on interband transitions has been considered impossible because -by analogy with bulk Si- the cross-section for free carrier absorption was thought to be higher than that for stimulated emission. Yet, in an article published in 2000, Pavesi et al. 7 claimed that optical gain could be achieved using Si nanocrystals, contrary to earlier predictions. Central in this claim is the presumption that the observed light emission from silicon nanocrystals is not due to the recombination of “free” excitons but rather to the recombination of electron-hole pairs trapped at an interface state. This could, according to the authors, reduce the deleterious effect of free carrier absorption. A three-level model was introduced to explain the observed optical gain, with the intermediate level attributed to a Si=O double bond at the interface between the nanocrystal and the surrounding silicon oxide matrix.


Free Carrier Absorption Optical Gain Si02 Film Silicon Nanocrystals Nanocrystal Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Photopoulos and A. G. Nassiopoulou, Appl. Phys. Lett. 77, 1816 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. Irrera, D. Pacifici, M. Miritello, G. Franzò, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, and P.G. Fallica, Appl. Phys. Lett. 81, 1866 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, and E.F. Crabbé, Appl. Phys. Lett. 68, 1377 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    M.L. Ostraat, J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan, and H. A. Atwater, Appl. Phys. Lett. 79, 433 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    P.G. Kik and A. Polman, J. Appl. Phys. 91, 534 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    H.-S. Han, S.-Y. Seo, and J.H. Shin, Appl. Phys. Lett. 79, 4568 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature 408, 440 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    K.S. Min, K.V. Shcheglov, C.M. Yang, H.A. Atwater, M.L. Brongersma, and A. Polman, Appl. Phys. Lett. 69, 2033 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    M.L. Brongersma, A. Polman, K.S. Min, and H.A. Atwater, J. Appl. Phys. 86, 759 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    J. Valenta, I. Pelant, and J. Linnros, Appl. Phys. Lett. 81, 1398 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    J. Diener, D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Rev. B. 63, 73302 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera, J. Appl. Phys. 89, 264 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    M.L. Brongersma, P.G. Kik, A. Polman, K.S. Min, and H.A. Atwater, Appl. Phys. Lett. 76, 351 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    M. Hybertsen, Phys. Rev. Lett. 72, 1514 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, and H.A. Atwater, Appl. Phys. Lett. 72, 2577 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys. 86, 6128 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, J. Appl. Phys. 87, 8165 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    M.J.A. de Dood, L.H. Slooff, A. Moroz, A. van Blaaderen, and A. Polman, Phys. Rev. A. 64, 33807 (2001), P.G. Kik, “Energy transfer in erbium doped optical waveguides based on silicon”, Ph.D. Thesis, FOM-Institute AMOLF (2000), p. 102.ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Sze, Physics of semiconductor devices (John Wiley and Sons, New York, 1981).Google Scholar
  22. 22.
    S. Takeoka, M. Fujii, and S. Hayashi, Phys. Rev. B 62 16820 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    D. Kovalev, private communication (2002).Google Scholar
  24. 4.
    M. Fujii, private communication (2002).Google Scholar
  25. 25.
    J. Diener, D.I. Kovalev, G. Polliski, and F. Koch, Appl. Phys. Lett. 74, 3350 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    P.D.J. Calcott et al., J. Phys. Cond. Matt. 5, L91 (1993).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Kanemitsu, Phys. Rev. B 53, 13515 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    R.G. Elliman, M.J. Lederer, and B. Luther-Davies, Appl. Phys. Lett. 80, 197 (2002).CrossRefGoogle Scholar
  29. 29.
    P.G. Kik, M.J.A. de Dood, and A. Polman, to be published.Google Scholar
  30. 30.
    Note that Eqn. (1) deviates from Eqn. (1) in Ref. 7, in that it does not include the linear term / in the prefactor, see: K.L. Shaklee, R.E. Nahaory, and R.F. Leheney, J. Lumin. 7, 284 (1973).Google Scholar
  31. 31.
    We note that, as discussed in section 3.5, variable-stripe length methods are sensitive to artifacts due to diffraction and confocal effects. The data by Kik et al. presented here are not corrected for such effects. However, the fact that similar curves are found for low and high pump power is a strong indication that no optical gain is observed.Google Scholar
  32. 32.
    A. Polman, presented at the MRS Fall Meeting, Boston, November, 2001.Google Scholar
  33. 33.
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    J. Valenta, I. Pelant, and J. Linnros, Appl. Phys. Lett. 81, 1398 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    R.G. Elliman, M.J. Lederer, N. Smith, and B. Luther-Davies, presented at 13th International Conference on Ion Beam Modification of Materials, Kobe, Japan, September 1-6, 2002, to be published in Nucl. Instr. and Meth. B (2003).Google Scholar
  36. 36.
    A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, Phys. Rev. B. 62, 12625 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • A. Polman
    • 1
  • R. G. Elliman
    • 2
  1. 1.FOM-Institute AMOLFAmsterdamThe Netherlands
  2. 2.Department of Electronic Materials Engineering Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations