Advertisement

Dislocation-Based Silicon Light Emitting Devices

  • M. A. Lourenço
  • M. S. A. Siddiqui
  • G. Shao
  • R. M. Gwilliam
  • K. P. Homewood
Chapter
Part of the NATO Science Series book series (NAII, volume 93)

Abstract

Silicon is by far the most commonly used and preferred semiconductor for the electronics industry, not least because of the much lower cost that results from, for example, cheaper substrates and the savings involved by the use of ultra large scale integration (ULSI) technology. Silicon’s main disadvantage is its inability to act as an efficient light emitter due to the indirect nature of the band gap.

Keywords

Dislocation Loop Thermal Quenching Silicon Lattice Electro Luminescence Ultra Large Scale Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Makita, Y. (1997), Proc. First NREL Conf., 3.Google Scholar
  2. [2]
    European Commission (1998), Technology Roadmap, Optoelectronic interconnects for integrated circuits, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  3. [3]
    Hirschman, K.D., Tysbekov, L., Duttagupta, S.P., and Fauchet, P.M. (1996) Silicon-based visible light-emitting devices integrated into microelectronic circuits, Nature 384, 338–341.ADSCrossRefGoogle Scholar
  4. [4]
    Lu, Z.H., Lockwood, D.J., and Baribeau, J.M. (1995) Quantum confinement and light emission in SiO2/Si superlatices, Nature 378, 258–260.ADSCrossRefGoogle Scholar
  5. [5]
    Komoda, T., Kelly, J., Cristiano, F., Nejim, A., Hemment, P.L.F., Homewood, K.P., Gwilliam, R., Mynard, J.E., and Sealy, B.J. (1995) Visible photoluminescence at room temperature from microcrys-talline silicon precipitates in SiO2 formed by ion implantation, Nucl. Inst. & Meth. B 96, 387–391.ADSCrossRefGoogle Scholar
  6. [6]
    Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C., and Poate, J.M. (1994) Room-temperature sharp line electroluminescence at λ = 1.54 μm from an erbium-doped, silicon light-emitting diode, Appl. Phys. Lett. 64, 2842–2844.ADSCrossRefGoogle Scholar
  7. [7]
    Vescan, L., and Stoica, T. (1999) Room-temperature SiGe light-emitting diodes, Journal of Luminescence 80, 485–489.ADSCrossRefGoogle Scholar
  8. [8]
    Leong, D., Harry, M., Reeson, K.J., and Homewood, K.P. (1997) A silicon/iron disilicide light-emitting diode operating at a wavelength of 1.5 μm, Nature 387, 686–688.ADSCrossRefGoogle Scholar
  9. [9]
    Tybeskov, L., Moore, K.L., Hall, D.G., and Fauchet, P.M. (1996) Intrinsic band-edge photolumines-cence from silicon clusters at room temperature, Phys. Rev B 54, R8361-R8364.Google Scholar
  10. [10]
    Sveinbjörnsson, E.O., and Weber, J. (1996) Room temperature electroluminescence from dislocation rich silicon, Appl. Phys. Lett. 69, 2686–2688.ADSCrossRefGoogle Scholar
  11. [11]
    Ng, W.L., Lourenço, M.A., Gwilliam, R.M., Ledain, S., Shao, G., and Homewood, K.P. (2001) An efficient room-temperature silicon-based light emitting diode, Nature 410, 192–194.ADSCrossRefGoogle Scholar
  12. [12]
    Hirth, J.P., and Lothe, J. (1982) Theory of Dislocations, John Wiley & Sons, New York.Google Scholar
  13. [13]
    Lourenço, M.A., Butler, T.M., Kewell, A.K., Gwilliam, R.M., Kirkby, K.J., and Homewood, K.P. (2001) Electroluminescence of β-FeSi2 light emitting devices, Jpn. J. Appl. Phys. 40, 4041–4044.ADSCrossRefGoogle Scholar
  14. [14]
    Lourenço, M.A., Ng, W.L., Shao, G., Gwilliam, R.M., and Homewood, K.P. (2002) Dislocation engineered silicon light emitting diodes, Proc. SPIE 4654, 138–141.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. A. Lourenço
    • 1
  • M. S. A. Siddiqui
    • 1
  • G. Shao
    • 2
  • R. M. Gwilliam
    • 1
  • K. P. Homewood
    • 1
  1. 1.School of Electronics and Physical SciencesUniversity of SurreyGuildford, SurreyUK
  2. 2.School of EngineeringUniversity of SurreyGuildford, SurreyUK

Personalised recommendations