Luminescence From Si/Sio2 Nanostructures

  • Yoshihiko Kanemitsu
Chapter
Part of the NATO Science Series book series (NAII, volume 93)

Abstract

The discovery of the room-temperature luminescence from Si [1] and Ge nanocrystals [4] has stimulated considerable efforts in understanding optical properties of indirect-gap elemental semiconductor nanostructures. In particular, Si nanocrystals are receiving widespread interest because of their high quantum efficiency of light emission at room temperature. The photoluminescence (PL) and electroluminescence (EL) efficiency of crystalline Si (c-Si) nanoparticles have greatly increased in the last decade. Very recently, optical gain and stimulated emission have been reported in silicon nanoparticles [6]. In addition, there have been many different approaches towards useful Si light-emitting materials and devices compatible with current Si microelectronics [8]. The realization of bright Si light-emitting devices and silicon lasers will bring about a revolution in the semiconductor industry. Optical and electronic devices can be fabricated from the same material of silicon, and silicon will be the leading material for the future optoelectronics.

Keywords

Anisotropy Recombination Recrystallization Nash Nism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canham, L. T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, 1046.ADSCrossRefGoogle Scholar
  2. 2.
    Kanemitsu, Y., Ogawa, T., Shiraishi, K., and Takeda, K. (1993) Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell, Phys. Rev. B 48, 4883.ADSCrossRefGoogle Scholar
  3. 3.
    Wilson, W. L., Szajowski, P. F., and Brus, L. E. (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science 262, 1242.ADSCrossRefGoogle Scholar
  4. 4.
    Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., (1991) Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices, Appl. Phys. Lett. 59, 3168.ADSCrossRefGoogle Scholar
  5. 5.
    Kanemitsu, Y., Uto, H., Masumoto, Y., and Maeda, Y. (1992) On the origin of visible photolumines-cence in nanometer-size Ge crystallites, Appl. Phys. Lett. 61, 2187.ADSCrossRefGoogle Scholar
  6. 6.
    Pavesi, L., Dal Negre, L., Mazzoleni, C., Franzo, G., and Priolo, F. (2000) Optical gain in silicon nanocrystals, Nature 408, 440.ADSCrossRefGoogle Scholar
  7. 7.
    Nayfeh, M. H., Barry, N., Therrien, J., Akcakir O., Gratton, E., and Belomoin, G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles, Appl. Phys. Lett. 78, 1131.ADSCrossRefGoogle Scholar
  8. 8.
    Ball, P. (2001) Let there be light, Nature 409, 974.ADSCrossRefGoogle Scholar
  9. 9.
    Iyer, S. S. and Xie, Y.-H (1993) Light emission from silicon, Science 260, 40.ADSCrossRefGoogle Scholar
  10. 10.
    Wehrspohn, R. B., Chazalviel, J. N., Ozanam, F., and Solomon, I (1999) Spatial versus quantum confinement in porous amorphous silicon nanostructures, Eur. Phys. J. B 8, 179.ADSCrossRefGoogle Scholar
  11. 11.
    Kanemitsu, Y. Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T. and Mimura, H. (1993) Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 48, 2827.ADSCrossRefGoogle Scholar
  12. 12.
    Bustarret, E., Sauvain, E., and Ligeon, M. (1997) High-resolution transmission electron microscopy study of luminescent anodized amorphous silicon, Philos. Mag. Lett. 75, 35.ADSCrossRefGoogle Scholar
  13. 13.
    Kanemitsu, Y., Fukunishi, Y., and Kushida, T. (2000) Decay dynamics of visible luminescence in amorphous silicon nanoparticles, Appl. Phys. Lett. 77, 211.ADSCrossRefGoogle Scholar
  14. 14.
    Street, R. A., Hydrogenated Amorphous Silicon (Cambridge Univ., Cambridge, 1991).CrossRefGoogle Scholar
  15. 15.
    Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D. (1993) Spectroscopic identification of the luminescence mechanism of highly porous silicon, J. Lumin. 57, 257.CrossRefGoogle Scholar
  16. 16.
    Suemoto, T., Tanaka, K., Nakajima, A., and Itakura, T. (1993) T., Observation of phonon structures in porous Si luminescence, Phys. Rev. Lett. 70, 3659.ADSCrossRefGoogle Scholar
  17. 17.
    Kanemitsu, Y., and Okamoto, S. (1998) Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals, Phys. Rev. B 58, 9652.ADSCrossRefGoogle Scholar
  18. 18.
    Shaklee, K. L., and Nahory, R. E. (1970) Valley-orbit splitting of free excitons? The absorption edge of Si, Phys. Rev. Lett. 24, 942.ADSCrossRefGoogle Scholar
  19. 19.
    Matsumoto, T., Suzuki, J., Ohnumra, M., Kanemitsu, Y., and Masumoto, Y. (2001) Evidence of quantum size effect in nanocrystalline silicon by optical absorption, Phys. Rev. B 63, 195–322.CrossRefGoogle Scholar
  20. 20.
    Kanemitsu, Y., and Okamoto, S. (1997) Photoluminescence from Si/SiO2 single quantum wells by selective excitation, Phys. Rev. B 56, R15561.ADSCrossRefGoogle Scholar
  21. 21.
    Takahashi, Y., Furuta, T., Ono, Y., Ishiyama, T., and Tabe, M. (1995) Photoluminescence from a silicon quantum well formed on separation by implanted oxygen substrates, Jpn. J. Appl. Phys. 34, 950.ADSCrossRefGoogle Scholar
  22. 22.
    Kanemitsu, Y., Iiboshí, M., and Kushida, T. (2000) Photoluminescence dynamics of amorphous Si/SiO2 quantum wells, Appl. Phys. Lett. 76, 2200.ADSCrossRefGoogle Scholar
  23. 23.
    Nishimoto, K., Sotta, D., Durand, H. A., Etoh, K., and Ito, K. (1998) Visible photoluminescence from a-Si:H/SiO2 superlattice fabricated by UHV evaporation, J. Lumin. 80, 439.CrossRefGoogle Scholar
  24. 24.
    Kanemitsu, Y., and Kushida, T. (2000) Size effects on the luminescence spectrum in amorphous Si/SiO2 multilayer structures, Appl. Phys. Lett. 11, 3550.ADSCrossRefGoogle Scholar
  25. 25.
    Miyazaki, S., Yamada, K., and Hirose, M (1991) Optical and electrical properties of a-Si3N4:H/a-Si:H superlattices prepared by plasma-enhanced nitridation technique, J. Non-Cryst. Solids 137/138, 1119.ADSCrossRefGoogle Scholar
  26. 26.
    Miyazaki S., and Hirose, M. (1989) Amorphous silicon superlattices prepared by direct photochemical deposition, Philos. Mag. B 60, 23.CrossRefGoogle Scholar
  27. 27.
    Lockwood, D. J., Lu, Z. H., and Baribeau, J.-M. (1996) Quantum confined luminescence in Si/SiO2 superlattices, Phys. Rev. Lett. 76, 539.ADSCrossRefGoogle Scholar
  28. 28.
    Okamoto, S., and Kanemitsu, Y. (1997) Quantum confinement and interface effects on photolumines-cence from silicon single quantum wells, Solid State Commun. 103, 573.ADSCrossRefGoogle Scholar
  29. 29.
    Grom, G F., Lockwood, D., J., McCaffrey, J. P., Labbe, H., J., Fauchet, P. M., White Jr, B., Diener, J., Kovalev, D., Koch, F., and Tsybeskov, L. (2000) Ordering and self-organization in nanocrystalline silicon, Nature 407, 358.ADSCrossRefGoogle Scholar
  30. 30.
    Carrier, P., Lewis, L. J., and Dharma-wardana, M. W. C. (2002) Optical properties of structurally relaxed Si/SiO2 superlattices: The role of bonding at interfaces. Phys. Rev. B 65, 165339.ADSCrossRefGoogle Scholar
  31. 31.
    Tiedje, T., Abeles, B., and Brooks, B. G. (1985) Energy transport and size effects in the photolumines-cence of amorphous-germanium/amorphous-silicon multilayer structures, Phys. Rev. Lett. 54, 2545.ADSCrossRefGoogle Scholar
  32. 32.
    Nguyen, H. V., Lu, Y., Kim, S., Wakagi, M., and Collins, R. W. (1995) Optical properties of ultrathin crystalline and amorphous silicon films, Phys. Rev. Lett. 74, 3880.ADSCrossRefGoogle Scholar
  33. 33.
    Park, N. M., Kim, T. S., and Park, S. J. (2001) Band gap engineering of amorphous silicon quantum dots for light-emitting diodes, Appl. Phys. Lett. 78, 2575.ADSCrossRefGoogle Scholar
  34. 34.
    Tsang, C., and Street, R. A. (1979) Recombination in plasma-deposited amorphous Si:H: Luminescence decay, Phys. Rev. B 19, 3027.ADSCrossRefGoogle Scholar
  35. 35.
    Wilson, B. A., Kerwin, T. P., and Harbison, J. P. (1985) Optical studies of thermalization mechanism in a-Sr.H, Phys. Rev. B 31, 7953.ADSCrossRefGoogle Scholar
  36. 36.
    Estes, M. J., and Moddel, G. (1996) Luminescence from amorphous silicon nanostructures, Phys. Rev. B 54, 14633.ADSCrossRefGoogle Scholar
  37. 37.
    Allan, G., Delerue, C., and Lannoo, M. (1997) Electronic structure of amorphous silicon nanoclusters, Phys. Rev. Lett. 78, 3161.ADSCrossRefGoogle Scholar
  38. 38.
    Collins, R. W., Paesler, M. A., and Paul, W. (1980) The temperature dependence of photoluminescence in a-Si:H alloys, Solid State Commun. 34, 833.ADSCrossRefGoogle Scholar
  39. 39.
    Tanaka, M., and Masumoto, Y. (2000) Very weak temperature quenching in orange luminescence of ZnS:Mn2+ nanocrystals in polymer, Chem. Phys. Lett. 324, 249.ADSCrossRefGoogle Scholar
  40. 40.
    Kanemitsu, Y., Nihonyangaki, S., Sato, H., and Hirai, Y(2002) Efficient radiative recombination of indirect excitons in silicon nanowires, Phys. Stat. Sol. (a) 190, 755.ADSCrossRefGoogle Scholar
  41. 41.
    Dean, P. J., Haynes, J. R., and Flood, W. F. (1967) New radiative recombination processes involving neutral donors and acceptors in silicon and germanium, Phys. Rev. 161, 711.ADSCrossRefGoogle Scholar
  42. 42.
    Davis, G. (1989) The optical properties of luminescence centres in silicon, Phys. Rep. 176, 83.ADSCrossRefGoogle Scholar
  43. 43.
    Nihonyanagi, S., and Kanemitsu, Y. (2002) Mechanism of room temperature luminescence in silicon nanowires, submitted for publication.Google Scholar
  44. 44.
    Tsybeskov, L., Moore, K. L., Duttagupta, S. P., Hirschman, K. D., Hall, D. G., and Fauchet, P. M. (1996) A Si-based light-emitting diode with room-temperature electroluminescence at 1.1 eV, Appl. Phys. Lett. 69, 3411ADSCrossRefGoogle Scholar
  45. 45.
    Tsybeskov, L., Hirschman, K. D., Duttagupta, S. P., Zacharias, B. M., Fauchet, P. M., McCaffrey, J. P., and Lockwood, D. J (1998) Nanocrystalline-silicon superlattice produced by controlled recrystallization, Appl. Phys. Lett. 72, 43.ADSCrossRefGoogle Scholar
  46. 46.
    Kanemitsu, Y., Inagaki, T. J., Ando, M., Matsuda, K., Saiki, T., and White, C. W. (2002) Photoluminescence spectrum of highly excited single CdS nanocrystals studied by a scanning near-field optical microscopy, Appl. Phys. Lett. 81, 141.ADSCrossRefGoogle Scholar
  47. 47.
    Bacher, G., Weigand, R., Seufert, J., Kulakovskii, D., Gippius, N. A., Forchel, A., Leonardi, K., and Hommel, D. (1999) Biexciton versus exciton lifetime in a single semiconductor quantum dot, Phys. Rev. Lett. 83, 4417.ADSCrossRefGoogle Scholar
  48. 48.
    Kanemitsu Y., and Okamoto, S. (1997) Resonantly excited photoluminescence from porous silicon: Effects of surface oxidation on resonant luminescence spectra, Phys. Rev. B 56, R1696.ADSCrossRefGoogle Scholar
  49. 49.
    Kageshima, H., and Shiraishi, K. (1997) Microscopic mechanism for SiO2/Si interface passivation: Si=O double bond formation, Surf. Sci. 380, 61.ADSCrossRefGoogle Scholar
  50. 50.
    Kageshima, H., and Shiraishi, K. (1997) First-principles study of photoluminescence from silicon/silicon-oxide interfaces, Mater. Res. Soc. Proc. 486, 337.CrossRefGoogle Scholar
  51. 51.
    Kanemitsu, Y., Okamoto, S., Otobe, M., and Oda, S. (1997) Photoluminescence mechanism in surface-oxidized silicon nanocrystals, Phys. Rev. B 55, R7375.ADSCrossRefGoogle Scholar
  52. 52.
    Wolkin, M. V., Jörne, J., Fauchet, P. M., Allan, G., and Delerue, C. (1999) Electronic sates and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197.ADSCrossRefGoogle Scholar
  53. 53.
    Cullis, A. G., Canham, L. T., and Calcott, P. D. J. (1997) The structural and luminescence properties of porous silicon, J. Appl. Phys. 82, 909.ADSCrossRefGoogle Scholar
  54. 54.
    Cullis, A. G., and Canham, L., T. (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature 353, 335.ADSCrossRefGoogle Scholar
  55. 55.
    Schuppler, S., Friedman, S. L., Marcus, M. A., Aldler, D. L., Xie, Y-H., Ross, F. M., Chabal, Y J. Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H. (1995) Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si, Phys. Rev. B 52, 4910.ADSCrossRefGoogle Scholar
  56. 56.
    Zhang., Q., and Bayliss, S. C. (1996) The correlation of dimensionality with emitted wavelength and ordering of freshly produced porous silicon, J. Appl. Phys. 79, 1351.ADSCrossRefGoogle Scholar
  57. 57.
    Binder, M., Edelmann, T., Metzger, T. H., Mauckner, G., Goerigk., G., and Peisl, J. (1996) Bimodal size distribution in p-porous silicon studied by small angle x-ray scattering, Thin Solid Films 276, 65.ADSCrossRefGoogle Scholar
  58. 58.
    Brus, L. E., Szajowski, P. F., Wilson, W. L. Harris, T. D., Schuppler, S., and Citrin, P. H. (1995) Electronic spectroscopy and photophysics of Si nanocrystals: Relationship to bulk c-Si and porous Si, J. Amer. Chem. Soc. 117, 2915.CrossRefGoogle Scholar
  59. 59.
    Takeoka, S., Fujii, M., and Hayashi, S. (2000) Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime, Phys. Rev. B 62, 16820.ADSCrossRefGoogle Scholar
  60. 60.
    van Buuren, T., Dinh, L. N., Chase, L. L., Siekhus, W. J., and Terminello, L. J. (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys. Rev. Lett. 80, 3803.ADSCrossRefGoogle Scholar
  61. 61.
    Matsumoto, T., Futagi, T., Mimura, H., and Kanemitsu, Y. (1993) Ultrafast decay dynamics of luminescence in porous silicon, Phys. Rev. B 47, 13876.ADSCrossRefGoogle Scholar
  62. 62.
    Kanemitsu, Y. (1993) Slow decay dynamics of visible luminescence in porous silicon: Hopping of carries confined on a shell region in nanometer-size Si crystallites, Phys. Rev B 48, 12357.ADSCrossRefGoogle Scholar
  63. 63.
    Kanemitsu, Y. (1994) Luminescence properties of nanometer-sized Si crystallites: Core and surface states, Phys. Rev. B 49, 16845.ADSCrossRefGoogle Scholar
  64. 64.
    Kovalev, D., Heckler, H., Ben-Chorin, M, Polisski, G., Schwartzkopff, M., and Koch, F. (1998) Breakdown of the k-conservation rule in Si nanocrystals, Phys. Rev. Lett. 81, 2803.ADSCrossRefGoogle Scholar
  65. 65.
    Ito, K., Ohyama, S., Uehara, Y., and Ushioda, S. (1995) Visible light emission spectra of individual microstructures of porous Si, Appl. Phys. Lett. 67, 2536.ADSCrossRefGoogle Scholar
  66. 66.
    Mason, M. D., Credo, G. M., Weston, K. D. and Buratto, S. K. (1998) Luminescence of individual porous Si chromophores, Phys. Rev. Lett. 80, 5405.ADSCrossRefGoogle Scholar
  67. 67.
    Valenta, J., Juhasz, R., and Linnros, J. (2002) Photoluminescence spectroscopy of single silicon quantum dots, Appl. Phys. Lett. 80, 1070.ADSCrossRefGoogle Scholar
  68. 68.
    Leong, D., Harry, M., Reeson, K. J., and Homewood, K. P. (1997) A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1. 5 μm, Nature 387, 686.ADSCrossRefGoogle Scholar
  69. 69.
    Mimura, A., Fujii, M., Hayashi, S., Kovalev, D., and Koch, F. (2000) Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals, Phys. Rev. B 62, 12625.ADSCrossRefGoogle Scholar
  70. 70.
    Han, H. S., Seo, S. Y., and Shin, J. H. (2001) Optical gain at 1.54 μm in erbium-doped silicon nano-clusters sensitized waveguide, Appl. Phys. Lett. 79, 4568.ADSCrossRefGoogle Scholar
  71. 71.
    Lu, Z. H., and Grozea, D. (2002) Crystalline Si/SiO2 quantum wells, Appl. Phys. Lett. 80, 255.ADSCrossRefGoogle Scholar
  72. 72.
    Ng., W. L., Lourenco, M. A., Gwilliam, R. M., Ledain, S., Shao, G., and Homewood, K. P. (2001) An efficient room-temperature silicon-based light-emitting diode, Nature 410, 192.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Yoshihiko Kanemitsu
    • 1
  1. 1.Nara Institute of Science and TechnologGraduate School of Materials ScienceIkoma, NaraJapan

Personalised recommendations