Skip to main content

Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton

  • Chapter
Mechanics of Elastic Biomolecules

Abstract

Filamin A produces isotropic cross-linked three-dimensional orthogonal networks with actin filaments in the cortex and at the leading edge of cells. Filamin A also links the actin cytoskeleton to the plasma membrane via its association with various kinds of membrane proteins. Recent new findings strongly support that filamin A plays important roles in the mechanical stability of plasma membrane and cortex, formation of cell shape, mechanical responses of cells, and cell locomotion. To elucidate the mechanical properties of the actin/filamin A network and the complex of membrane protein-filamin A-actin cytoskeleton, the mechanical properties of single human filamin A (hsFLNa) molecules in aqueous solution were investigated using atomic force microscopy. Ig-fold domains of filamin A can be unfolded by the critical external force (50–220 pN), and this unfolding is reversible, i.e., the refolding of the unfolded chain of the filamin A occurs when the external force is removed. Due to this reversible unfolding of Ig-fold domains, filamin A molecule can be stretched to several times the length of its native state. Based on this new feature of filamin A as the ‘large-extensible linker’, we describe our hypothesis for the mechanical role of filamin A in the actin cytoskeletons in cells and discuss its biological implications. In this review, function of filamin A in actin cytoskeleton, mechanical properties of single filamin A proteins, and the hypothesis for the mechanical role of filamin A in the actin cytoskeletons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellanger JM, Astier C, Sardet C, Ohta Y, Stossel TP and Debant A (2000) The Racl-and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2: 888–892.

    Article  PubMed  CAS  Google Scholar 

  • Browne KA, Johnstone RW, Jans DA and Trapani JA (2000) Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J Biol Chem 275: 39,262–39,266.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood DA, Huttenlocher A, Kiosses WB, Rose DM, Woodside DG, Schwartz MA and Ginsberg MH (2001) Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 12: 1060–1068.

    Article  Google Scholar 

  • Carl P, Kwok CH, Manderson G, Speicher DW and Discher DE (2001) Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proc Natl Acad Sci USA 98: 1565–1570.

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J and Fernandez JM (1999) Proc Natl Acad Sci USA 96: 3694–3699.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol 129: 1589–1599.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR and Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255: 325–327.

    Article  PubMed  CAS  Google Scholar 

  • D’Addario M, Arora PD, Fan J, Ganss B, Ellen RP and McCulloch CAG (2001) Cytoprotection against mechanical forces delivered through β1 integrins requires induction of filamin A. J Biol Chem 276: 31,969–31,977.

    Article  PubMed  Google Scholar 

  • Doi M and Edwards SF (1986) The theory of polymer dynamics, Oxford University Press.

    Google Scholar 

  • Enz R (2002) The actin-binding protein filamin-A interacts with the metabotropic glutamate receptor type 7. FEBS Lett 514: 184–188.

    Article  PubMed  CAS  Google Scholar 

  • Evans E and Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72: 1541–1555.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan LA, Chou J, Falet H, Neujahr R, Hartwig JH and Stossel TP (2001) Filamin A, the Arp2/3 complex, and the morphology and function of cortial actin filaments in human melanoma cells. J Cell Biol 155: 511–517.

    Article  PubMed  CAS  Google Scholar 

  • van der Flier A and Sonnenberg A (2001) Structural and functional aspects of filamins. Biochim Biophys Acta 1538: 99–117.

    Article  PubMed  Google Scholar 

  • Florin EL, Moy VT and Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264: 415–417.

    Article  PubMed  CAS  Google Scholar 

  • Fox JEB (1985) Identification of actin-binding proteins as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J Biol Chem 260: 11,970–11,977.

    PubMed  CAS  Google Scholar 

  • Fox JW, Lamperti ED, Ekçioglu YZ, Hong SE, Feng Y, Graham DA, Scheffer IE, Dobyns WB, Hirsch BA, Radtke RA, Berkovic SF, Huttenlocher PR and Walsh CA (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21: 1315–1325.

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Zänker KS and Bröcker E-V (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microscopy Res Tech 43: 369–378.

    Article  CAS  Google Scholar 

  • Fucini P, Renner C, Herberhold C, Noegel AA and Holak TA (1997) The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Nature Struct Biol 4: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Furuike S, Ito T and Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498: 72–75.

    Article  PubMed  CAS  Google Scholar 

  • Glogauer M, Arora P, Chou D, Janmey PA, Downey GP and McCulloch CAG (1998) The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273: 1689–1698.

    Article  PubMed  CAS  Google Scholar 

  • Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ and Hartwig JH (1990) Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 111: 1089–1105.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH and Shevlin P (1986) The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J Cell Biol 103: 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH and Stossel TP (1981) Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments. J Mol Biol 145: 563–581.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH and Shevlin P (1986) The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J Cell Biol 103: 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  • Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K and Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93: 3477–3481.

    Article  PubMed  CAS  Google Scholar 

  • Hjälm G, John MacLeod R, Kifor O, Chattopadhyay N and Brown EM (2001) Filamin-A binds to the carboxyl-terminal tail of the calcium-sensing receptor, an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase. J Biol Chem 276: 34,880–34,887.

    Article  PubMed  Google Scholar 

  • Ikai A, Mitsui K, Furutani Y, Hara M, McMurty J and Wong KP (1997) Protein stretching II: results for carbonic anhydrase. Jpn J Appl Phys 36: 3887–3893.

    Article  CAS  Google Scholar 

  • Ito T, Suzuki A and Stossel T (1992) Regulation of water flow by actin-binding protein-induced actin gelatin. Biophys J 61: 1301–1305.

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Lamb J and Stossel TP (1990) Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345: 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Käs J, Strey H, Tang JX, Finger D, Ezzel R, Sackmann E and Janmey PA (1996) F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J 70: 609–625.

    Article  PubMed  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL and Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276: 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Krief S, Faivre JF, Robert P, Le Douarin B, Brument-Larignon N, Lefrère I, Bouzyk MM, Anderson KM, Greller LD, Tobin FL, Souchet M and Bril A (1999) Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem 274: 36,592–36,600.

    Article  PubMed  CAS  Google Scholar 

  • Leonardi A, Ellinger-Ziegelbauer H, Franzoso G, Brown K, Siebenlist U (2000) Physical and functional interaction of filamin (actin-binding protein-280) and tumor necrosis factor receptor-associated factor 2. J Biol Chem 275: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Carrion-Vazquez M, Oberhauser AF, Marszalek PE and Fernandez JM (2000) Point mutations alter the mechanical stability of immunoglobulin modules. Nature Struct Biol 7: 1117–1120.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Bermak JC, Wang ZW and Zhou QY (2000) Modulation of dopamine D2 receptor signaling by actin-binding protein (ABP-280). Mol Pharmacol 57: 446–452.

    PubMed  CAS  Google Scholar 

  • Lin R, Karpa K, Kabbani N, Goldman-Rakic P and Levenson R (2001) Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 98: 5258–5263.

    Article  PubMed  CAS  Google Scholar 

  • Loo DT, Kanner SB and Aruffo A (1998) Filamin binds to the cytoplasmic domain of the beta 1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 273: 23,304–23,312.

    Article  PubMed  CAS  Google Scholar 

  • Marti A, Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel TP, Kyriakis JM and Avruch J (1997) Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells. J Biol Chem 272: 2620–2628.

    Article  PubMed  CAS  Google Scholar 

  • Meyer SC, Zuerbig S, Cunningham CC, Hatwig T, Bissei K, Gardner JE and Fox JEB (1997) Identification of the region in actin-binding protein that binds to the cytoplasmic domain of glycoprotein Ibα. J Biol Chem 272: 2914–2919.

    Article  PubMed  CAS  Google Scholar 

  • Morse DC (1998) Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31: 7044–7067.

    Article  CAS  Google Scholar 

  • Mullins RD, Heuser JA and Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95: 6181–6186.

    Article  PubMed  CAS  Google Scholar 

  • Nikki M, Merilainen J and Lehto VP (2002) FAP52 regulates actin organization via binding to filamin. J Biol Chem 277: 11,432–11,440.

    Article  PubMed  CAS  Google Scholar 

  • Noegel AA, Rapp S, Lottspeich F, Schleicher M and Stewart M (1989) J Cell Biol 109: 607–618.

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser AF, Marszalek PE, Erickson HP and Fernandez JM (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Suzuki N, Nakamura S, Hartwig, JH and Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 96: 2122–2128.

    Article  PubMed  CAS  Google Scholar 

  • Petrecca K, Miller DM and Shrier A (2000) Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin. J Neuroscience 20: 8736–8744.

    CAS  Google Scholar 

  • Pokutta S and Weis WI (2002) The cytoplasmic face of cell contact sites. Curr Opi Struct Biol 12: 255–262.

    Article  CAS  Google Scholar 

  • Rief M, Fernandez JM and Gaub HE (1998) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81: 4764–4767.

    Article  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Sharma CP, Ezzell RM and Arnaout MA (1995) Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD 18. J Immunol 154: 3461–3470.

    PubMed  CAS  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Schleichen M and Shapiro SS (2001) Filamins as integrators of cell mechanics and signaling. Nature Reviews Mol Cell Biol 2: 138–146.

    Article  CAS  Google Scholar 

  • Suzuki A, Yamazaki M and Ito T (1989) Osmoelastic coupling in biological structures: Formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry 28: 6513–6518.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Yamazaki M and Ito T (1996) Polymorphism of F-actin assembly. 1. A quantitative phase diagram of F-actin. Biochemistry 35: 5238–5244.

    Article  PubMed  CAS  Google Scholar 

  • Tachikawa M, Nakagawa H, Terasaki AG, Mori K and Ohashi K (1997) A 260-kDa filamin/ABP-related protein in chicken gizzard smooth muscle cells is a new component of the dense plaques and dense bodies of smooth muscle. J Biochem 122: 314–321.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA and Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle proteins titin. Nature 387: 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda Y, Yasutake H, Ishijima A and Yanagida T (1996) Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci USA 93: 12,937–12,942.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Oka M, Tanaka T and Yamazaki M (2002) A new method for the preparation of giant liposomes in high salt concentrations and growth of protein microcrystals in them. Biochim Biophys Acta 1561: 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y and Shen Z (2001) Interaction with BRCA2 suggests a role for filamin-1 (hsFLNa) in DNA damage response. J Biol Chem 276: 48,318–48,324.

    PubMed  CAS  Google Scholar 

  • Watanabe K, Nair P, Labeit D, Kellermayer MSZ, Greaser M, Labeit S and Granzier H (2002a) J Biol Chem 277: 11,549–11,558.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Muhle-Goll C, Kellermayer MSZ, Labeit S and Granzier H (2002b) J Struct Biol 137: 1248–1258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamazaki, M., Furuike, S., Ito, T. (2003). Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics