Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 91))

Abstract

The intense study devoted to metal nanoparticles is motivated by their extremely interesting optical properties. Such properties have already been described by Faraday some 150 years ago [1], and still give raise to hundreds of scientific articles every year. The origin of such a special optical behaviour can be found in the interaction between incoming light and the free conduction electrons [2], When the wavelength of light couples with the oscillation frequency of the conduction electrons, a so-called plasmon resonance arises, which is manifested as an intense absorption band. The most spectacular cases are found when such plasmon resonance band exists in the visible wavelength range, since then the dispersions of metal nanoparticles display brilliant colours. The precise wavelength of the plasmon resonance depends on several parameters, among which particle size and shape, surface charge, and the nature of the environment are probably the most important ones [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faraday, M. (1857) Experimental relations of gold (and other metals) to light, Philos. Trans. Roy. Soc. ion. 147, 145–181.

    Article  Google Scholar 

  2. Kreibig, U. and Vollmer, M. (1995) Optical Properties Of Metal Clusters, Springer Verlag, Berlin.

    Google Scholar 

  3. Mulvaney, P. (1996) Surface Plasmon spectroscopy of nanosized metal particles, Langmuir 12, 788–800.

    Article  CAS  Google Scholar 

  4. Pastoriza-Santos, I. and Liz-Marzán, L. M. (2002) Synthesis of Silver Nanoprisms in DMF, Nano Lett., in press.

    Google Scholar 

  5. Pastoriza-Santos, I. and Liz-Marzán, L. M. (2000) Reduction of silver nanopartides in DMF. Formation of monolayers and stable colloids, Pure Appl. Chem. 72, 83–90.

    Article  CAS  Google Scholar 

  6. Pastoriza-Santos, I. and Liz-Marzán, L. M. (1999) Formation and stabilization of silver nanopartides through reduction by N,N-dimethylformamide, Langmuir 15, 948–951.

    Article  CAS  Google Scholar 

  7. Pastoriza-Santos, I., Koktysh, D., Mamedov, A. A., Giersig, M., Kotov, N. A., and Liz-Marzán, L. M. (2000) One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly, Langmuir 16, 2731–2735.

    Article  CAS  Google Scholar 

  8. Pastoriza-Santos, I. and Liz-Marzán, L. M. (2002) Preparation of PVP-protected metal nanoparticles in DMF, Langmuir 18, 2888–2894.

    Article  CAS  Google Scholar 

  9. van der Zande, B. M. I., Böhmer, M. R., Fokkink, L. G., and Schöneberger, C. (2000) Colloidal dispersions of gold rods: synthesis and optical properties, Langmuir 2000, 16, 451-458.

    Google Scholar 

  10. Link, S., Mohamed, M. B., and El-Sayed, M. A. (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, J. Phys. Chem. B 103, 3073–3077.

    Article  CAS  Google Scholar 

  11. Chang, S. S., Shin, C. W., Chen, C. D., Lai, W. C., and Wang, C. R. C. (1999) The shape transition of gold nanorods, Langmuir 15, 701–709.

    Article  CAS  Google Scholar 

  12. Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A., and Liz-Marzân, L. M. (2002) Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions, Langmuir 18, 3694–3697.

    Article  CAS  Google Scholar 

  13. Jin, R.C., Cao, Y. W., Mirkin, C. A., Kelly, K. L, Schatz, G. C., and Zheng, J. G. (2001) Photoinduced conversion of silver nanospheres to nanoprisms, Science 294, 1901–1903.

    Article  CAS  Google Scholar 

  14. Sun, Y., Gates, B., Mayers, B., and Xia. Y. (2002) Crystalline silver nanowires by soft solution processing, Nano Lett. 2, 165–168.

    Article  CAS  Google Scholar 

  15. Fievet, F., Lagier, J. P., Figlarz, M. (1989) Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process, MRS Bull, December, 29-34.

    Google Scholar 

  16. Pastoriza-Santos, I., Giersig, M., and Liz-Marzán, L. M., unpublished results.

    Google Scholar 

  17. Schatz, G. C. (2001) Electrodynamics of nonspherical noble metal nanoparticles and nanoparticles aggregates, J. Molec. Struct. (Theochem) 573, 73–80.

    Article  CAS  Google Scholar 

  18. Ung, T., Giersig, M., Dunstan, D., Mulvaney, P. (1997) Spectroelectrochemistry of colloidal silver, Langmuir 13, 1773–1782.

    Article  CAS  Google Scholar 

  19. Ung, T., Liz-Marzán, L. M., Mulvaney, P. (1999) Redox catalysis using Ag@SiO2 colloids, J. Phys. Chem. B 103, 6770–6773.

    Article  CAS  Google Scholar 

  20. Ung, T., Liz-Marzán, L. M., Mulvaney, P. (2001) Optical properties of thin films of Au@SiO2 particles, J. Phys. Chem. B 105, 3441–3452.

    Article  CAS  Google Scholar 

  21. Henrichs, S., Collier, C. P., Saykally, R. J., Shen, Y. R., Heath, J. R. (2000) The dielectric function of silver nanoparticles Langmuir monolayers compressed through the metal insulator transition, J. Am. Chem. Soc, 122, 4077–4083.

    Article  CAS  Google Scholar 

  22. Chumanov, G., Sokolov, K., Cotton, T. M. (1996) Unusual extinction spectra of nanometer-sized silver particles arranged in two-dimensional arrays, J. Phys. Chem. 100, 5166–5168.

    Article  CAS  Google Scholar 

  23. Kotov, N. A., Dekàny, I., and Fendler, J H. (1995) Layer-by-layer self-assembly of polyelectrolytesemiconductor nanoparticle composite films, J. Phys. Chem. 99, 13065–13069.

    Article  CAS  Google Scholar 

  24. Decher, G. (1997) Fuzzy nanoassemblies: toward layered polymeric multicoinposites, Science 277, 1232–1237.

    Article  CAS  Google Scholar 

  25. Ung, T., Liz-Marzàn, L. M., Mulvaney, P. (2002) Gold nanoparticle thin films, Colloid Surf A 202, 119–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pastoriza-Santos, I., Hamanaka, Y., Fukuta, K., Nakamura, A., Liz-MarzáN, L.M. (2003). Anisotropic Silver Nanoparticles: Synthesis and Optical Properties. In: Liz-Marzán, L.M., Giersig, M. (eds) Low-Dimensional Systems: Theory, Preparation, and Some Applications. NATO Science Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0143-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0143-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1169-6

  • Online ISBN: 978-94-010-0143-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics