Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 91))

  • 328 Accesses

Abstract

We present some recent results of simulations of carbon single-walled nanotube growth. Our simulations are based on Density Functional Theory electronic structure calculations, and they allow us to gain important understanding on the physico-chemical processes driving nanotube growth, and the conditions under which these take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F. and Smalley R. E. (1985) Ceo: Buckminsterfullerene, Nature, 318, 162–3.

    Article  CAS  Google Scholar 

  2. Iijima S. (1991) Helical microtubules of graphitic carbon, Nature, 354, 56–58; Iijima S. and Ichihashi T. (1993) Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603-5.

    Article  CAS  Google Scholar 

  3. For further information on Nanotubes and Fullerenes, see e.g. Ajayan P. M. and Ebbesen T. W. (1997) Nanometre-size tubes of carbon, Rep. Prog. Phys., 60, 1025–62; Dresselhaus M. S., Dresselhaus G. and Eklund P. C. (1996) Science of Fullerenes and Carbon Nanotubes (Academic Press, New York); Ebbesen T. W. (Ed.) (1997) Carbon Nanotubes, Preparation and Properties (CRC Press, Boca Raton); Terrones M., Hsu W. K., Kroto H. W. and Walton D. R. M. (1999), Nanotubes: a revolution in materials science and electronics, Topics in Current Chemistry, 199, 189-234.

    Article  CAS  Google Scholar 

  4. Dai H. J., Hafner J. H., Rinzler A. G., Colbert D. T. and Smalley R. E. (1996), Nanotubes as nanoprobes in scanning probe microscopy, Nature, 384, 147–150.

    Article  CAS  Google Scholar 

  5. Dekker C. (1999) Carbon nanotubes as molecular quantum wires, Physics Today, 5, 22–8.

    Article  Google Scholar 

  6. Kanzow H. and Ding A. (1999), Formation mechanism of single-wall carbon nanotubes on liquid-metal particles, Phys. Rev. B, 60, 11180–6.

    Article  CAS  Google Scholar 

  7. Sanchez-Portal D., Ordejön P., Artacho E. and Soler J. M. (1997) Densityfunctional method for very large systems with LCAO basis sets, Int. J. Quantum Chem., 65, 453–61; Artacho E., Sánchez-Portal D., Ordejón P., García A and Soler J. M. (1999) Linear-scaling ab-initio calculations for large and complex systems, Phys. Stat. Sol. (b), 215, 809-17; Soler J. M., Artacho E., Gale J. D.

    Article  Google Scholar 

  8. García A., Junquera J., Ordejón P. and Sánchez-Portal D. (2002) The Siesta method for ab initio order-N materials simulation, J. Phys. Condens. Matter, 14, 2745-79.

    Google Scholar 

  9. Hohenberg P. and Kohn W. (1964) Inhomegeneous electron gas, Phys. Rev., 136, B864-71; Kohn W. and Sham L. J. (1965) Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133-8.

    Google Scholar 

  10. Perdew J. P. and Zunger A. (1981) Self-interaction correction to densityfunctional approximations for many-electron systems, Phys. Rev. B, 23, 5048–79.

    Article  CAS  Google Scholar 

  11. Ceperley D. M. and Alder B. J. (1980) Ground state of the electron gas by a stochastic method, Phys. Rev. Lett., 45, 566–9.

    Article  CAS  Google Scholar 

  12. Harris J. (1985) Simplified method for calculating the energy of weakly interacting fragments, Phys. Rev. B, 31, 1770–9.

    Article  CAS  Google Scholar 

  13. Allen M. P. and Tildesley D. J. (1987) Computer Simulation of Liquids, (Clarendon Press, Oxford).

    Google Scholar 

  14. Johnson M. W., March N. H., McCoy B., Mitra S. K., Page D. I. and Perrin R. C. (1976) Structure and effective pair interaction in liquid nickel, Philos. Mag., 33, 203–6.

    Article  CAS  Google Scholar 

  15. Alemany M. M. G., Rey C. and Gallego L. J. (1998) Computer simulation study of the dynamic properties of liquid Ni using the embedded-atom model, Phys. Rev. B, 58, 685–93.

    Article  CAS  Google Scholar 

  16. Alfé D., Price G. D. and Gillan M. J. (1999) Oxygen in the Earth’s core: a first-principles study, Phys. Earth Planet. Interiors, 110, 191–210.

    Article  Google Scholar 

  17. Bhatia A. B. and Thornton D. E. (1970) Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B, 2, 3004–12.

    Article  Google Scholar 

  18. Gavillet J., Loiseau A., Journet C, Willaime F., Ducastelle F. and Charlier J. C. (2001) Root-growth mechanism for single-wall carbon nanotubes, Phys. Rev. Lett., 87, 275504(1-4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hernández, E., Ordejón, P., Canadell, E., Junquera, J., Soler, J.M. (2003). Molecular Dynamics Simulations of Nanotube Growth. In: Liz-Marzán, L.M., Giersig, M. (eds) Low-Dimensional Systems: Theory, Preparation, and Some Applications. NATO Science Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0143-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0143-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1169-6

  • Online ISBN: 978-94-010-0143-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics