Plasmons in Carbon Nanotubes

  • K. Kempa
  • R. Chura
Part of the NATO Science Series book series (NAII, volume 91)


Carbon nanotubes posses a very rich spectrum of plasmon modes. For single wall, metallic carbon nanotubes, in addition to the high frequency plasma modes in the UV range, and the depolarization shifted van Hove plasma resonances, there are also low frequency, quasi-ID plasmons in the far-infrared frequency range, which interact with phonons. We study these plasmon modes in a unified random phase approximation approach, including effects of phonon coupling. We discuss our calculations in the context of recent experiments.


Carbon Nanotubes Graphene Sheet Dielectric Function Plasmon Mode Semiconductor Superlattices 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1999) Physical Properties of Carbon Nanotubes, Imperial College Press, London.Google Scholar
  2. 2.
    Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105–1107.CrossRefGoogle Scholar
  3. 3.
    Dresselhaus, M. S. and Eklund, P. C. (2000) Phonons in carbon nanotubes, Adv. Phys. 49, 705–814.CrossRefGoogle Scholar
  4. 4.
    Brown, S. D. M., Jorio, A., Corio, P., Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Kneipp, K. (2001) Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Phys. Rev. B 63, 155414/1-155414/8.Google Scholar
  5. 5.
    Jiang, C, Kempa, K., Zhao, J., Schlecht, U., Kolb, U., Basché, T., Burghard, M. and Mews, A, Strong enhancement of the Breit-Wigner-Fano Raman line in carbon nanotube bundles caused by plasmon band formation, to be published.Google Scholar
  6. 6.
    Pichler, T., Knupfer, M., Golden, M. S., Fink, J., Rinzler, A., and Smalley, R.E. (1998) Localized and delocalized electronic states in single wall carbon nanotubes, Phys. Rev. Lett. 80, 4729–4732.CrossRefGoogle Scholar
  7. 7.
    Kempa, K., Broido, D., Beckwith, C, and Cen, J. (1989) d-function Approach to the Electromagnetic Response of Semiconductor Heteroslructures, Phys. Rev. B 40, 8385–8392.CrossRefGoogle Scholar
  8. 8.
    Longe, P. and Bose, S. M. (1993) Collective Excitations in metallic graphene tubules, Phys. Rev. B 48, 18239–18243.CrossRefGoogle Scholar
  9. 9.
    Kempa, K., Liebsch, A., and Schaich, W. L. (1988) Comparison of Calculations of Dynamical Screening at Jellium Surfaces, Phys. Rev. B 38, 12645–12648.CrossRefGoogle Scholar
  10. 10.
    Kempa, K. (1987) Influence of a constant current on Raman spectra of high mobility superlattices,App/ Phys. Lett.50,1185-1187; Bakshi, P., Cen, 1., and Kempa, K. (1988) Amplification of surface modes in type 11 semiconductor superlattices, 1. Appl. Phys. 64, 2243-2245.Google Scholar
  11. Lett. 50, 1185–1187; Bakshi, P., Cen, J., and Kempa, K. (1988) Amplification of surface modes in type II semiconductor superlattices, J. Appl. Phys. 64, 2243-2245.Google Scholar
  12. 11.
    Dumitrica, T., Landis, C. M., and Yakobson, B. I. (2002) Curvature-Induced Polarization in Carbon Nano shells, abstract submitted to NT02, Boston College, July 6-11. (

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • K. Kempa
    • 1
  • R. Chura
    • 1
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations