Submicron Size Particles of Magnetic Films and Multilayers

  • M. Hanson
  • O. Kazakova
Part of the NATO Science Series book series (NAII, volume 91)


The area between the micro- and macroscopic ranges of magnetism offers an exciting field for research and development. The design of magnets for small-scale applications requires several physical parameters to be simultaneously controlled and matched to each other. First one should control the exchange energy, the crystalline anisotropy and the atomic magnetic moment; material parameters governing e. g. the ordering temperature and magnetization of the material. This may be accomplished by applying modern preparation techniques to make thin films and layered materials, yielding a variety of intrinsic magnetic properties [1]. Second, the demagnetizing effects that are inevitably introduced when the lateral extensions of the material are limited must be incorporated in the design to yield the proper zero-field state as well as dynamic response [2]. There are many questions to answer about the zero-field state of a magnetic particle, for instance how the critical sizes for formation of a single domain (SD) can be reached. SD particles with two possible orientations of their moment in zero field — a binary bit — are suggested as building blocks of a novel magnetic memory [3]. At the same time as a stable zero-field state is obtained, magnetization reversal should occur at an appropriate field with a narrow distribution of switching fields among the particles.


Multilayer Film Hysteresis Curve Epitaxial Film Magnetocrystalline Anisotropy Magnetic Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bland, J. A. C. and Heinrich, B. (1994) Ultrathm Magnetic Structures I and II. Springer, Berlin.Google Scholar
  2. 2.
    See e. g. Aharoni, A. (1996) Introduction to the Theory of Ferromagnelism. Clarendon Press, Oxford.Google Scholar
  3. 3.
    See e. g. White, R. L., New, R. M. H. and Pease, R. F. W. (1997) Patterned media: A viable Route to 50 Gbit/in2 and Up for Magnetic Recording?, IEEE Trans. Magn. 33, 990–995. Chou, S. Y. (1997) Patterned Magnetic Nanostructures and Quantized Magnetic Disks, Proc. IEEE 85, 652-671.CrossRefGoogle Scholar
  4. Plumer, M., van Ek, J. and Weiler, D. (eds.) (2001) The Physics of Ultrahigh-Density Magnetic Recording. Springer, Berlin.Google Scholar
  5. 4.
    Hanson, M., Johansson, C., Nilsson, B., Isberg, P. and Wäppling R. (1999) Magnetic properties of two-dimensional arrays of epitaxial Fe (001) sub-micron particles, J. Appl. Phys. 85, 2793–2799.CrossRefGoogle Scholar
  6. 5.
    Hanson, M., Kazakova, O., Blomqvist, P., Wäppling, R. and Nilsson, B. (2002) Magnetic domain structures in submicron size particles of epitaxial Fe (001): shape anisotropy and thickness dependence, (Unpublished).Google Scholar
  7. 6.
    Kazakova, O., Hanson, M., Blomqvist, P. and Wäppling, R. (2001) Magnetic properties of two-dimensional arrays of epitaxial Co submicron particles: critical size for single-domain formation and multidomain structures, J. Appl. Phys. 90, 2440–2446.CrossRefGoogle Scholar
  8. 7.
    Hanson, M., Johansson, C., Nilsson, B. and Svedberg, E. B. (2001) Magnetic propertiees of epitaxial Ni (001) films and sub-micron particles, J. Magn. Magn. Mater. 236 139–150.CrossRefGoogle Scholar
  9. 8.
    Kazakova, O., Hanson, M., Blomqvist, P. and Wäppling, R. (2002) Magnetic properties of submicron size particles made from Fe/Co multilayers, J. Magn. Magn. Mater. 240, 21–23.CrossRefGoogle Scholar
  10. 9.
    Hanson, M., Kazakova, O., Blomqvist, P. and Wäppling, R. (2002) Submicron particles of Fe/Co multilayers: Influence of interactions, J. Appl. Phys. 91, 7042–7044.CrossRefGoogle Scholar
  11. 10.
    Kazakova, O., Hanson, M., Blomqvist, P. and Wäppling, R. (2002) Interplay between shape and magnetocrystalline anisotropies in patterned bcc Fe/Co multilayers, (Unpublished).Google Scholar
  12. 11.
    Kazakova, O., Hanson, M., Blixt, A. M. and Hjörvarsson (2002) Domain structure of circular and ring magnets, J. Magn. Magn. Material, (In press).Google Scholar
  13. 12.
    Isberg, P., Svedberg, E. B., Hjörvarsson, B., Wäppling, R. and Hultman L. (1997) Growth of epitaxial Fe/V (001) superlattice films, Vacuum 48 483–489.CrossRefGoogle Scholar
  14. 13.
    Blomqvist, P. and Wäppling, R. (2002) Growth of ultrathin cobalt films on Fe(001) studied by reflection high-energy electron diffraction and x-ray diffraction, J. Vac. Sci. Technol. A 50, 234–238.CrossRefGoogle Scholar
  15. 14.
    Blomqvist, P., Wäppling, R., Broddefalk, A., Nordblad, P., te Velthuis, G. E. and Felcher, G. P. (2002) Structural and magnetic properties of BCC Fe/Co (0 0 1) superlattices, J. Magn. Magn. Mater. 248 75–84.CrossRefGoogle Scholar
  16. 15.
    Svedberg, E. B., Sandström, P., Sundgren, J. E., Greene, J. E. and Madsen, L. D. (1999) Epitaxial growth of Ni on MgO(002) 1x1: surface interaction vs. multidomain strain relief, Surface Science 429 206–216.Google Scholar
  17. 16.
    See e. g. Lebib, A., Chen, Y., Carcenac, F., Cambril, E., Manin, L., Couraud, L. and Launois, H. (2000) Tri-layer systems for nanoimprint lithography with an improved process latitude, Microel. Eng. 53 175–178, and references therein.CrossRefGoogle Scholar
  18. 17.
    Morrish, A. H. (1965) The Physical Principles of Magnetism. Wiley, New York.Google Scholar
  19. 18.
    Zhu, J., Zheng, Y., Prinz, G. (2000) Ultrahigh density vertical magnetoresistive random access memory J. Appl. Phys. 87 6668–6673.Google Scholar
  20. 19.
    See e. g. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. and Ono, T. (2000) Magnetic Vortex Core observation in Circular Dots of Permalloy, Science 289 930–932.CrossRefGoogle Scholar
  21. 20.
    See e. g. Rothman, J., Kläui, M., Lopez-Diaz, L., Vaz, C. A. F., Bleloch, A., Bland, J. A. C., Cui Z. and Speaks, R. (2001) Observation of a Bi-Domain State and Nucleation Free Switching in Mesoscopic Ring Magnets. Phys. Rev. Lett. 86, 1098–1101. Kläui, M., Lopez-Diaz, L., Rothman, J., Vaz, C. A. F., Bland, J. A. C. and Cui, Z. (2002) Switching properties of free-standing epitaxial ring magnets, J. Magn. Magn. Mater. 240, 7-10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. Hanson
    • 1
  • O. Kazakova
    • 1
  1. 1.Department of Solid State PhysicsChalmers University of Technology and Göteborg UniversityGöteborgSweden

Personalised recommendations