Skip to main content

Circular Magnetic Elements: Ground States, Reversal and Dipolar Interactions

  • Chapter
Book cover Low-Dimensional Systems: Theory, Preparation, and Some Applications

Part of the book series: NATO Science Series ((NAII,volume 91))

  • 334 Accesses

Abstract

The continuous reduction of the system sizes of magnetic materials into the nanometer regime has kept magnetism an attractive field of research for the past 15 years. New phenomena have been put into evidence, when the system size becomes comparable to typical magnetic or electronic length scales [13]. Besides being conceptually attractive to the physicist, these phenomena promise the development of new devices, called spinelectronic devices [4, 5]. Spin-electronics refers to the fact that in ferromagnets the conduction electrons can be distinguished depending on whether their spin is aligned parallel or antiparallel to the magnetization. Via spin dependent scattering, the electron spin orientation can then be used to control the electronic signal. For example, in spin-valve [57] and tunnel junction [8, 9] devices, two ferromagnetic layers are separated by a nonmagnetic (metallic or insulating) spacer layer. The resistance across this multilayer stack is higher when the magnetization in the two layers is aligned antiparallel as compared to parallel. Such stacked elements are promising candidates to be used as the basic logic cell for a new generation of Magnetic Random Access Memories (MRAM) [4, 5, 7, 9]. The perpetual increase in storage density as well as the increase in access time (now reaching the GHz regime) define two tasks for the physicist: (i) finding a system of reduced size such that the switching between two well defined micromagnetic configurations (corresponding to a “0” and “1”) is stable and repetitive, (ii) finding a mechanism by which this switching occurs on the nanosecond or sub-nanosecond time-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heinrich, B. and Bland, J. A. C. (eds.) (1994) Ultrathin Magnetic Structures, Springer, Berlin

    Google Scholar 

  2. Ziese, M. and Thornton, M. J. (eds.) (2001) Spin Electronics, Springer, Berlin

    Google Scholar 

  3. Hubert, A and Schäfer, R. (1998) Magnetic Domains, Springer, Berlin

    Google Scholar 

  4. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y. and Treger, D. M. (2001) Spintronics: a spin-based electronics vision for the future, Science 294, 1488–1495

    Article  CAS  Google Scholar 

  5. Prinz, G. (1998) Magnetoelectronics Science 282, 1660–1663

    Article  CAS  Google Scholar 

  6. Dieny, B., Speriosu, V. S., Metin, S., Parkin, S. S. P., Gurney, B. A., Baumgart, P., and Wilhort, D. R. (1991) Magnetotransport properties of magnetically soft spin-valve structures, J.Appl. Phys. 69, 4774–4779

    Article  CAS  Google Scholar 

  7. Tehrani, S., Chen, E., Durlam, M., DeHerrera, M., Slaughter, J. M., Shi, J. and Kerszykowski, G (1999) High-density submicron magnetoresistive random access memory, J. Appl. Phys. 85, 5822–5827

    Article  CAS  Google Scholar 

  8. Moodera J. S., Kinder, L. R., Wong, T. M. and Meservey, R. (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett. 74, 3273–3276

    Article  CAS  Google Scholar 

  9. Parkin, S. S. P., Roche, K. P., Samant, M. G., Rice, P. M., Beyers, R. B., Scheuerlein, R. E., O’Sullivan, E, J., Brown, S. L., Bucchigano, J., Abraham, D. W., Lu, Y., Rooks, M.. Trouillard, P. L., Wanner, R A. and Gallagher, W. J. (1999) Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory, J. Appl. Phys. 85, 5828–5833.

    Article  CAS  Google Scholar 

  10. for nanofabrication methods see for instance: Chen, Y., Natali, M., Li, S. and Lebib, A. (September 2002) Application of nanoimprint lithography in magnetism, in Sotomayor, C. M. (ed.), Alternative Lithography, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  11. Brown, J. F. Jr. (1963) Micromagnetics, J. Wiley and Sons, New York.

    Google Scholar 

  12. Miltat, J. (1994) Domains and domain walls in soft magnetic materials, in R. Gerber, C. D. Wright, G. Asti (eds), Applied Magnetism, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, pp. 221.

    Google Scholar 

  13. Tonomura, A. (1987) Applications of electron holography. Rev. Mod. Phys. 59, 639–669.

    Article  CAS  Google Scholar 

  14. Raabe, J., Pulwey, R., Sattler, R., Schweinbock, T., Zweck, J., Weiss, D., (2000) Magnetization pattern of ferromagnetic nano-disks, J. Appl. Phys. 88, 4437–4439.

    Article  CAS  Google Scholar 

  15. Shinjo, T., Okuno, T., Hassdorf, R., Shigento, K., Ono, T. (2000) Magnetic vortex core observation in circular dots of permalloy, Science 289, 930–932.

    Article  CAS  Google Scholar 

  16. Miramond, C., Fermon, C., Rousseaux, F., Decanini, D., and Carcenac, F., (1997) Permalloy cylindrical submicron size dot arrays, J. Magn. Magn. Mat. 165, 500–503.

    Article  CAS  Google Scholar 

  17. Demand, M., Hehn, M., Ounadjela, K., Stamps, R. L., Cambril, E., Cornette, A. and Rousseaux, F. (2000) Magnetic domain structures in arrays of submicron Co dots studied with magnetic force microscopy, J. Appl Phys. 87, 5111–5113.

    Article  CAS  Google Scholar 

  18. Prejbeanu, I. L., Natali, M., Buda, L. D., Ebels, U., Lebib, A., Chen, Y. and Ounadjela, K. (2002) In-plane reversal mechanisms in circular Co dots, J. Appl. Phys. 91, 7343–7346.

    Article  CAS  Google Scholar 

  19. Buda, L. D., Prejbeanu, I. L., Demand, M, Ebels, U. and Ounadjela, K. (2001) Vortex states stability in circular Co(0001) dots, IEEE Trans. Magn. 37, 2061–2063.

    Article  CAS  Google Scholar 

  20. Buda, L. D., Prejbeanu, I. L., Ebels, U. and Ounadjela, K. (2002) Micromagnetic simulations of magnetisation in circular cobalt dots, Comp. Mat. Science 24, 181–185.

    Article  CAS  Google Scholar 

  21. Most simulation results presented in this chapter have been obtained using the micromagnetics calculations as described in refs. [19, 20]. Some calculations have been performed using the publicly available code OOMMF ref. [22].

    Google Scholar 

  22. http://math.nist.gov/oommf/

  23. Cowburn, R. P, Koltsov, D. K., Adeyeye, A. O., Welland, M. E.and Tricker, D. M (1999) Single-domain circular nanomagnets, Phys. Rev. Lett. 83, 1042–1045.

    Article  CAS  Google Scholar 

  24. Metlov, K. L.and Guslienko, K. Y. (2001) arXiv:cond-mat/0110037.

    Google Scholar 

  25. Usov, A. and Peschany, S. E. (1994) Fiz. Met. Metalloved. 12, 13 and (1993) Magnetization curling in a fine cylindrical particle J. Magn. Magn. Mat. 118, L290-L294.

    Google Scholar 

  26. Hanson, M., Johansson, C., Nielsson, B. and Svedberg, E. B., (2001) Magnetic properties of epitaxial Ni (0 0 1) films and sub-micron particles, J. Magn. Magn. Mat. 236, 139–150.

    Article  CAS  Google Scholar 

  27. Hanson, M., Johansson, C., Nielsson. B., Isberg, P. and Wäppling, R. (1999) Magnetic properties of twodimensional arrays of epitaxial Fe (001) submicron particles, J. Appl. Phys. 85, 2793–2799.

    Article  CAS  Google Scholar 

  28. Kazakova, O., Hanson, M., Blomquvist, P. and Wäppling, R. (2001) Arrays of epitaxial Co submicron particles. Critical size for single-domain formation and multidomain structures, J. Appl. Phys. 90, 2440–2446.

    Article  CAS  Google Scholar 

  29. Cowburn, R. P and Welland, M. E. (1998) Phase transitions in planar magnetic nanostructures, Appl. Phys. Lett. 72, 2041–2043.

    Article  CAS  Google Scholar 

  30. Ross, C. A., Hwang, M., Shima, M., Cheng, J. Y., Farhoud, M., Savas, T. A., Smith, H. I, Schwarzscher, W., Ross, F. M., Redjdal, M., Humphrey, F. B. (2002) Micromagnetic behavior of electrodeposited cylinder arrays Phys. Rev. B 65, 144417–144424.

    Article  Google Scholar 

  31. Fernandez, A. and Cerjan. C. J. (2000) Nucleation and annihilation of magnetic vortices in submicron-scale Co dots, J. Appl. Phys. 87, 1395–1401.

    Article  CAS  Google Scholar 

  32. Fernandez, A., Gibbson, M. R., Wall, M. A. and Cerjan, C. J. (1998) Magnetic domain structure and magnetization reversal in submicron-scale Co dots, J. Magn. Magn. Mat. 190, 71–80.

    Article  CAS  Google Scholar 

  33. Guslienko, K. Y., Choe, S. B. and Shin, S. C. (2000) Reorientational magnetic transition in high-density arrays of single-domain dots, Appl. Phys. Lett. 76, 3609–3611.

    Article  CAS  Google Scholar 

  34. Usov, N. A. (1999) Magnetization curling in soft type ferromagnetic particles with large aspect ratios, J. Magn. Magn. Mat. 203, 277–279.

    Article  CAS  Google Scholar 

  35. Zhu, J.-G., Zheng, Y.and Prinz, G. A. (2000) Ultrahigh density vertical magnetoresistive random access memory, J. Appl.Phys. 87, 6668–6673

    Article  CAS  Google Scholar 

  36. Li, S., Peyrade, D., Natali, M., Lebib, A., Chen, Y., Ebels, U., Buda, L. D. and Ounadjela, K. (2001) Flux Closure Structures in Cobalt Rings, Phys. Rev. Lett. 86, 1102–1105

    Article  CAS  Google Scholar 

  37. Rothman, J., Kläui, M., Lopez-Diaz, L., Vaz, C. A. F., Bleloch, A., Bland, J. A. C., Cui, Z. and Speaks, R, (2001) Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets, Phys. Rev. Lett. 87, 1098–1101.

    Article  Google Scholar 

  38. Buda, L. D., Prejbeanu, I. L., Ebels, U. and Ounadjela, K. (2002) Magnetotransport measurements as a tool to probe the micromagnetic configurations in epitaxial Co wires, J. Magn. Magn. Mat. 240, 27–29.

    Article  Google Scholar 

  39. Cowburn, R. P.and Weiland, M. E. (1998) Configurational anisotropy in nanomagnets, Phys. Rev. Lett. 84, 5414–5417.

    Article  Google Scholar 

  40. Cowburn, R. P. (2000) Property variation with shape in magnetic nanoelements, J. Phys. D: Appl. Phys. 33, R1–R16.

    Article  CAS  Google Scholar 

  41. Schneider, M, Hoffmann, H. and Zweck, J. (2000) Lorentz microscopy of circular ferromagnetic permalloy nanodisks, Appl. Phys. Lett. 77, 2909–2911.

    Article  CAS  Google Scholar 

  42. Pokhil, T. Song, D. A. and Nowak. J. (2000) Spin vortex states and hysteretic properties of submicron size Rife elements, J. Appl. Phys. 87, 6319–6321.

    Article  CAS  Google Scholar 

  43. Novosad, V., Guslienko, K. Yu., Shima, H., Otani, Y., Fukamichi, K., Kikuchi, N., Kitakami, O. and Shimida, Y. (2001) Nucleation and annihilation of magnetic vortices in sub-micron Permalloy dots, IEEE Trans. Magn. 37, 2088–2090.

    Article  CAS  Google Scholar 

  44. Guslienko, K. Yu. and Metlov, K. L. (2001) Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field, Phys. Rev. B 63, 100403–100406.

    Article  Google Scholar 

  45. Guslienko, K. Yu., Novosad, V., Otani, Y., Shima, H. and Fukamichi, K. (2001) Field evolution of magnetic vortex state in ferromagnetic disks, Appl. Phys. Lett. 78, 3848–3850 and (2001) Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays, Phys. Rev. B 65, 24414-24424.

    Article  CAS  Google Scholar 

  46. Shima, H., Novosad, V., Otani, Y., Fukamichi, K., Kikuchi, N., Kitakami, O. and Shimada, Y. (2002) Pinning of magnetic vortices in microfabricated permalloy dot arrays, J. Appl. Phys. 92, 1473–1476.

    Article  CAS  Google Scholar 

  47. Lebib, A., Li, S. P., Natali, M. and Chen, Y. (2001) Size and thickness dependencies of magnetization reversal in Co dot arrays, J. Appl. Phys. 89, 3892–3896.

    Article  CAS  Google Scholar 

  48. Schneider, M., Hoffmann, H., Otto, S., Haug, Th. and Zweck, J. (2002) Stability of magnetic vortices in flat submicron permalloy cylinders, J. Appl. Phys. 92, 1466–1472.

    Article  CAS  Google Scholar 

  49. Schneider, ML, Hoffmann, H. and Zweck, J. (2001) Magnetic switching of single vortex permalloy elements, Appl. Phys. Lett. 79, 3113–3115.

    Article  CAS  Google Scholar 

  50. Girgis, E., Schelten, J., Shi, J., Janesky, J., Tehrani, S. and Goronkin, H. (2000) Switching characteristics and magnetization vortices of thin-film cobalt in nanometer-scale patterned arrays, Appl. Phys. Lett. 76. 3780–3782.

    Article  CAS  Google Scholar 

  51. Johnson, J. A., Grimsditch, M., Metlushko, V., Vavassori, P., Illic, B., Neuzil, P. and Kumar, R. (2000) Magneto-optic Kerr effect investigation of cobalt and permalloy nanoscale dot arrays: Shape effects on magnetization reversal, Appl. Phys. Lett. 77, 4410–4412.

    Article  CAS  Google Scholar 

  52. Okuno, T., Shigeto, K., Ono, T., Mibu, K. and Shinjo. T (2002) MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field, J. Magn. Magn. Mat. 240, 1–6.

    Article  CAS  Google Scholar 

  53. Prakash, S. and Henley, C. L. (1990) Phys. Rev. B 42, 6574–6598.

    Article  Google Scholar 

  54. Cowburn, R. P. (2002) Probing antiferromagnetic coupling between nanomagnets, Phys. Rev. B, 65, 92409–92412.

    Article  Google Scholar 

  55. Cowburn, R. P. and Welland, M. E. (2000) Room temperature magnetic quantum cellular automata, Science 287, 1466–1468.

    Article  CAS  Google Scholar 

  56. Joseph, R. I. and E. Schlömann, E. (1965) J. Appl. Phys. 36, 1579.

    Article  Google Scholar 

  57. Olive, E. and Molho, P. (1998) Thermodynamic study of a lattice of compass needles in dipolar interaction, Phys. Rev. B 58, 9238–9247.

    Article  CAS  Google Scholar 

  58. Guslienko, K. Y. (1999) Magnetostatic interdot coupling in two-dimensional magnetic dot arrays, Appl. Phys. Lett. 75, 394–396.

    Article  CAS  Google Scholar 

  59. Natali, M., Lebib, A., Chen, Y., Prejbeanu, I. L. and Ounadjela, K. (2002) Configurational anisotropy in square lattices of interacting cobalt dots, J. Appl. Phys. 91, 7041–7043

    Article  CAS  Google Scholar 

  60. Aign, T., Meyer, P., Lemerle, S., Jamet, J. P., Ferre, J., Mathet, V., Chappert, C., Gierak, J., Vieil, C., Rousseaux, F., Launois, H. and Bernas, H. (1998) Magnetization Reversal in Arrays of Perpendicularly Magnetized Ultrathin Dots Coupled by Dipolar Interaction, Phys. Rev. Lett. 81, 5656–5659.

    Article  CAS  Google Scholar 

  61. Hwang, M., Abraham, M. C., Savas, T. A., Smith, H. I. Ram, R. J. and Ross, C. A. (2000) Magnetic force microscopy study of interactions in 100 nm period nanomagnet arrays, J. Appl. Phys. 87, 5108–5110.

    Article  CAS  Google Scholar 

  62. Kirk, K. J., Chapman, J. N. and Wilkinson, C. D. (1997) Switching fields and magnetostatic interactions of thin film magnetic nanoelements, Appl. Phys. Lett. 71, 539–541.

    Article  CAS  Google Scholar 

  63. Grundler, D., Meier, G., Broocks, K. B., Heyn, C. and Heitmann, D. (1999) Magnetization of small arrays of interacting single-domain particles, J. Appl. Phys. 85, 6175–6177.

    Article  CAS  Google Scholar 

  64. Natali, M., Prejbeanu, I. L., Lebib, A., Buda, L. D., Ounadjela, K. and Chen, Y. (2002) Correlated Magnetic Vortex Chains in Mesoscopic Cobalt Dot Arrays, Phys. Rev. Lett. 88, 157203–157206

    Article  CAS  Google Scholar 

  65. Gibson, G. A. and Schultz, S. (1993) Magnetic force microscope study of the micromagnetics of submicrometer magnetic particles, J. Appl. Phys. 73, 4516–4521.

    Article  CAS  Google Scholar 

  66. Evoy, S., Carr, D. W., Sekaric, L., Suzuki, Y., Parpia, J. M. and Craighead, H. G. (2000) Thickness dependent binary behavior of elongated single-domain cobalt nanostructures, J. Appl. Phys. 87, 404–409.

    Article  CAS  Google Scholar 

  67. Kirk, K. J., Chapman, J. N., McVitie, S., Aitchison, P. R. and Wilkinson, C. D. W. (2000) Interactions and switching field distributions ofnanoscale magnetic elements, J. Appl. Phys. 87, 5105–5107.

    Article  CAS  Google Scholar 

  68. Ridley, P. H. W., Roberts, G. W., Chantrell, R. W., Kirk, K. J. and Chapman, J. N. (2000) Computational and experimental micromagnetics of arrays of 2-D platelets, IEEE Trans. Magn. 36, 3161.

    Article  Google Scholar 

  69. M. Grimsditch, M., Jaccard, Y. and Schuller, I. K. (1998) Magnetic anisotropies in dot arrays Shape anisotropy versus coupling, Phys. Rev. B 58, 11539–11543.

    Article  Google Scholar 

  70. Metlov. K. L. (2000) Micromagnetics and interaction effects in the lattice of magnetic dots, J. Magn. Magn. Mat. 215-216, 37–39.

    Article  CAS  Google Scholar 

  71. Dunin-Borowski, R. E., McCartney, M. R., Kardynal, B., Smith, D. J. and Scheinfein, M. R. (1999) Switching asymmetries in closely coupled magnetic nanostructure arrays, Appl. Phys. Lett. 75, 2641–26413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ebels, U., Natali, M., Buda, L.D., Prejbeanu, I.L. (2003). Circular Magnetic Elements: Ground States, Reversal and Dipolar Interactions. In: Liz-Marzán, L.M., Giersig, M. (eds) Low-Dimensional Systems: Theory, Preparation, and Some Applications. NATO Science Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0143-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0143-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1169-6

  • Online ISBN: 978-94-010-0143-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics