Skip to main content

Synthesis of Colloidal Magnetic Nanoparticles

Properties and Applications

  • Chapter
Low-Dimensional Systems: Theory, Preparation, and Some Applications

Part of the book series: NATO Science Series ((NAII,volume 91))

Abstract

Ferrofluids have received much attention in the past several decades for their interesting properties which can be exploited to develop new technologies [1] such as new refrigerators which employ the magneto caloric effect [2], new inks for inkjet printers [3], novel spin valves [4], or for new cancer therapies, such as hyperthermia [5], and apherese [6]. Therefore, the colloidal chemical synthesis of ferrofluids is of great interest. Many well documented references and patents have described successful syntheses of magnetic nanoparticles and the investigation of their properties and applications. A nearly complete list can be found in the magnetic fluids bibliography [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosensweig, R.E. (1998) Ferrohydrodynamics, Dover Publishing, New York.

    Google Scholar 

  2. a) Shao, Y.Z., Lai, J.K.L., and Shek, C.H. (1996) Preparation of nanocomposite working substances for roomtemperature magnetic refrigeration, J. Magn. Magn. Mater. 163, 103–108; b) Pecharsky, V.K. and Gschneidner Jr., K.A. (1999) Magnetocaloric effect and magnetic refrigeration, J. Magn, Magn. Mater. 200, 44-56; c) Yamamoto, T.A., Tanaka, M, Misaka, Y., Nakagawa, T., Nakayama, T., Niihara, K., and Numazawa, T. (2002) Dependence of the magnetocaloric effect in superparamagnetic nanocomposites on the distribution of magnetic moment size, Scr. Mater. 46, 89-94.

    Article  CAS  Google Scholar 

  3. a) Ronay, M. (1976) Preparation of magnetic particles and magnetic fluids by chemical reaction in a magnetic field, IBM Technol. Discl Bull. 19, 2753–2763; b) Kormann, C., Schwab, E., Raulfs, F.-W., and Beck, K. H. (1996) Magnetic ink concentrate, U.S. Patent 5,500,141.

    Google Scholar 

  4. Lodder, J.C., Monsma, DJ., Vlutters, R., and Shimatsu, T. (1999) The spin-valve transistor: technologies and progress, J. Magn. Magn. Mater. 198-199, 119–124.

    Article  CAS  Google Scholar 

  5. Jordan, A., Scholz, R., Wust, P., Schirra, H., Schiestel, T, Schmidt, H., and Felix, R. (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthennia on human mammary carcinoma cells in vitro, J. Magn. Magn. Mater 194, 185–196.

    Article  CAS  Google Scholar 

  6. Mapra, M.Y., Körner, I.J., Hildebrandt, M, Bargou, R., Krahl, D., Reichardt, P., and Dörken, B. (1997) Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: comparison of immunocytochemical tumor cell staining and reverse transcriptase-polymerase chain reaction, Blood 89, 337–344.

    Google Scholar 

  7. a) Charles, S.W. and Rosensweig, R.E. (1983) Magnetic fluids bibliography, J. Magn. Magn. Mater. 39, 192–220; b) Kamiyama, S. and Rosensweig, R.E. (1987) Magnetic fluids bibliography, J. Magn. Magn. Mater. 65, 403-439; c) Blum, E., Osols, R., and Rosensweig, R.E. (1990) Magnetic fluids bibliography, J. Magn. Magn. Mater. 85, 305-378; d) Cabuil, V., Neveu, S., and Rosensweig, R.E. (1993) Magnetic fluids bibliography, J. Magn. Magn. Mater. 122, 439-482; e) Bhatnagar, S.P. and Rosensweig, R.E. (1995) Magnetic fluids bibliography, J. Magn. Magn. Mater. 149, 199-232; f) Vékás, L, Sofonea, V., and Balau, O. (1999) Magnetic fluids bibliography, J. Magn. Magn. Mater. 201, 454-489.

    Article  Google Scholar 

  8. a) Weller, D. and Moser, A. (1999) Thermal effect limits in ultra-high density magnetic recording, IEEE Trans. Magn. 35, 4423–4439; b) Sellmyer, D.J., Yu, M., and Kirby, M.D. (1999) Nanostructured magnetic films for extremely high density recording, Nanostruct. Mater. 12, 1021-1026.

    Article  CAS  Google Scholar 

  9. Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J. (1988) Giant magnetoresistance of (100) Fe/(001) Cr magnetic superlattices, Phys. Rev Lett. 61, 2472–2475.

    Article  CAS  Google Scholar 

  10. a) Shull, R.D. and Bennet, L.H. (1992) Nanocomposite magnetic materials, Nanostruct. Mater. 1, 83–88; b) Harp, G.R., Parkin, S.S.P., O’Brian, W.L., and Tonner, B.P. (1995) Induced Rh magnetic moments in Fe-Rh and Co-Rh alloys using x-ray magnetic circular dicroism, Phys. Rev. B 51, 12037-12040; c) Moraïtis, G., Dreyssé, H., and Khan, M.A. (1996) Band theory of induced magnetic moments in CoM (M = Rh, Ru) alloys, Phys. Rev. B 54, 7140-7142.

    Article  CAS  Google Scholar 

  11. a) Rivas, J., Sánchez, R.D., Fondado, A., Izco, C., Garcia-Bastida, A.J., Garcia-Otero, J., Mira, J., Baldomir, D., Gonzáles, A., Lado, I., López-Quintela, M.A., Oseroff, S.B. (1994) Structural and magnetic characterization of Co particles coated with Ag, J. Appl. Phys. 76, 6564–6566; b) Sun, S., Murray, C.D., Weiler, D., Folks, L., and Moser, A. (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989-1992; c) Park, J.-I. and Cheon, J. (2001) Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetallation reaction, J. Am. Chem. Soc. 123, 5743-5746; d) O’Conner, C.J, Kolesnichenko, V., Carpenter, E., Sangregorio, C., Zhou, W., Kumbhar, A., Sims, J., and Agnoli, F. (2001) Fabrication and properties of magnetic particles with nanometer dimensions, Synth. Met. 122, 547-557; e) Bönnemann, H. (2001) Nanostructured metal colloids — chemistry and potential applications, in H.S. Nalwa (ed.), Handbook of Surfaces and Interfaces of Materials Volume 3, Nanostructured Materials, Micelles and colloids, Academic Press, San Diego, pp. 41-64; f) Fromen, M.C., Serres, A., Zitoun, D., Respaud, M., Amiens, C., Chaudret, B., Lecante, P., and Casanove, M J. (2001) Structural and magnetic study of bimetallic Co1-xRhx particles, J. Magn. Magn. Mater. 242-245, 610-612; g) Sobal, N.S. Hilgendorff, M., Möhwald, H. Giersig, M., Spasova, M., Radetic, T., and Farle, M. (2002) Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co, Nano Lett. 2, 621-624.

    Article  CAS  Google Scholar 

  12. a) Caruso, F., Spasova, M., Susha, A., Giersig, M., and Caruso, R.A. (2001) Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chem. Mater. 13, 109–116, b) Bizdoaca, E.L., Spasova, M., Farle, M., Hilgendorff, M., and Caruso, F. (2002) Magnetically directed selfassembly of submicron spheres with a Fe3O4 nanoparticle shell, J. Magn. Magn. Mater. 240, 44-46.

    Article  CAS  Google Scholar 

  13. a) Chen, J.P., Sørensen, C.M., and Klabunde, K.J. (1995) Enhanced magnetization of nanoscale colloidal nanoparticles, Phys. Rev. B 51, 11527–11532; b) Pileni, M.-P. (2001) Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater. 11, 323-336; c) Sun, S. and Murray, C.B. (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys. 85, 4325-4330; d) Giersig, M. Hilgendorff, M. (2000) Ordered colloidal magnetic particles by magnetophoretic deposition, in P. Jena, S.N. Khanna, and B.K. Rao (eds.), Cluster and Nanostructure Interfaces, World Scientific, Singapore, pp. 203-208; e) Giersig, M., Hilgendorff, M. (1999) The preparation of ordered colloidal magnetic particles by magnetophoretic deposition, J. Phys. D: Appl. Phys. 32, L111-L113; f) Murray, C.B., Sun, S., Doyle, H., and Betley, T. (2001) Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles, Mater. Res. Soc. Bull. 26, 985-991; g) Hilgendorff, M., Tesche, B., Giersig, M. (2001) Creation of 3-d crystals from single cobalt nanoparticles in external magnetic fields, Aust. J. Chem. 54, 497-501. h) Papirer, E, Horny, P., Balard, H., Anthore, R., Petipas, C, and Martinet, A. (1983) The preparation of a ferrofluid by decomposition of dicobalt octacarbonyl, J. Colloid Intrface Sci. 94, 207-219; i) Osuna, J., de Caro, D., Amiens, C., Chaudret, B., Snoeck, E., Respaud, M., Broto, J.-M., and Frert, A. (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor, J. Phys. Chem. 100, 14571-14574.

    Article  CAS  Google Scholar 

  14. Massart, R. and Cabuil, V. (1987) Synthese en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules, J. Chim. Phys. 84, 967–973.

    CAS  Google Scholar 

  15. Brinker, C.J. and Scherer, G.W. (1990) Sol-Gel Science, Academic Press Inc., San Diego.

    Google Scholar 

  16. a) Smith, T.W. and Wychick, D. (1980) Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl, J. Phys. Chem. 84, 1621–1629; b) Suslick, K.S., Fang, M., and Hyeon, T. (1996) Sonochemical Synthesis of iron colloids, J. Am. Chem. Soc. 118, 11960-11961.

    Article  CAS  Google Scholar 

  17. a) Hoon, S.R., Kilner, M., Russel, G.J., and Tanner, B.K. (1983) Preparation and properties of nickel ferrofluids, J. Magn. Magn. Mater. 39, 107–110; b) Cordente, N., Respaud, M., Senocq, F., Casanove, M.-J., Amiens, C., and Chaudret, B. (2001) Synthesis and magnetic properties of nickel rods, Nano Lett. 1, 565-568.

    Article  CAS  Google Scholar 

  18. Nakatani, I., Hijikata, M., and Ozawa, K. (1993) Iron-nitride magnetic fluids prepared by vapour-liquid reaction and their magnetic properties, J. Magn. Magn. Mater. 122, 10–14.

    Article  CAS  Google Scholar 

  19. Giersig, M. and Hilgendorff, M. (2002) On the road from single, nanosized, magnetic clusters to multidimensional nanostructures, Colloids and Surfaces A 202, 207–213.

    Article  CAS  Google Scholar 

  20. Talapin, D.V., Rogach, A.L., Haase, M., and Weiler, H. (2001) Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study, J. Phys. Chem. B 105, 12278–12285.

    Article  CAS  Google Scholar 

  21. a) Upadhyay, R.V., Davies, K.J., Wells, S., and Charles, S.W. (1995) Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1-xO4 spinel systems: II. Magnetic fluids, J. Magn. Magn. Mater. 139, 249–254; b) Davies, K.J., Wells, S., Upadhyay, R.V., Charles, S.W., O’Grady, K., El Hilo, M., Meaz, T., and Marup, S. (1995) The observation of multi-axial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids, J.Magn. Magn. Mater. 149, 14-18; c) Fannin, P.C., Charles, S.W., and Dormann, J.L. (1999) Field dependence of the dynamic properties of colloidale suspensions of Mn0.66Zn0.34Fe2O4 and Ni0.5Zn0.5Fe2O4 particles, J. Magn. Magn. Mater. 201, 98-101.

    Article  CAS  Google Scholar 

  22. a) Liz, L., López Quintela, M.A., Mira, J., and Rivas, J. (1994) Preparation of colloidale Fe304 ultrafine particles in microemuisions, J. Mater. Sci. 29, 3797–3801; b) López Pérez, J.A., López Quintela, M.A., Mira, J., Rivas, J., and Charles, S.W. (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method, J. Phys. Chem. B 101, 8045-8047.

    Article  CAS  Google Scholar 

  23. a) Davies, K.J., Wells, S., and Charles, S.W. (1993) The effect of temperature and oleate adsorption on the growth of maghemite particles, J. Magn. Magn. Mater. 122, 24–28; b) Mălăescu, I., Gabor, L., Claici, F., and Stefu, N. (2000) Study of some magnetic properties of ferrofluids filtered in magnetic field gradient, J. Magn. Magn. Mater. 222, 8-12; c) Fried, T., Shemer, G-, and Markovich, G. (2001) Ordered two-dimensional arrays of ferrite nanoparticles, Adv. Mater. 13, 1158-1161.

    Article  CAS  Google Scholar 

  24. S. Sun and H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc 124(28), 8204–8205 (2002).

    Article  CAS  Google Scholar 

  25. a) Brown, K.R. and Natan, M.J. (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces, Langmuir 14, 726–728; b) Jana, N.R., Gearheart, L, and Murphy, C.J. (2001) Evidence for seedmediated nucleation in the chemical reduction of gold salts to gold nanoparticles, Chem. Mater. 13, 2313-2322; c) Yu, H., Gibbons, P.C., Kelton, K.F., and Buhro, W.E. (2001) Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles, J. Am. Chem. Soc. 123, 9198-9199.

    Article  CAS  Google Scholar 

  26. a) Bönnemann, H., Bríjoux, W., Brinkmann, R., Dijius, E., Joußen, T., and Korall, B. (1991) Erzeugung von kolloidalen Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse, Angew. Chem. 103, 1344–1346, Angew. Chem. Int. Ed. 30, 1344-1346; b) Fink, J., Kiely, C.J., Bethell, D., and Schiffrin, D.J. (1998) Self-organization of nanosized god particles, Chem. Mater. 10, 922-926.

    Article  Google Scholar 

  27. Buske, N., Sonntag, H., and Götze, T. (1984) Magnetic fluids-their preparation, stabilization and applications in colloid science, Colloids and Surfaces 12, 195–202.

    Article  CAS  Google Scholar 

  28. Gittins, D.I. and Caruso, F. (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media, Angew. Chem. Int. Ed. 40, 3001–3004.

    Article  CAS  Google Scholar 

  29. a) Katsikas, L., Eichmüller, A., Giersig, M., and Weiler, H. (1990) Discrete exitonic transitions in quantumsized CdS particles, Chem. Phys. Lett. 172, 201–204; b) Dance, I.G., Garbutt, R.G. and Bailey, T.D. (1990) at Aggregated structures of the compounds Cd(SC6H4X-4)2 in DMF solution, Inorg. Chem. 29(4), 603-608.

    Article  CAS  Google Scholar 

  30. Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., and Kagan, C.R. (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices, IBM J. Res. Dev. 45, 47–56.

    Article  CAS  Google Scholar 

  31. Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L, Barbara, B., Vereist, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ould Ely, T., Amiens, C., and Chaudret, B. (1998) Surface effects on the magnetic properties of ultrafine cobalt particles, Phys. Rev. B 57, 2925–2935.

    Article  CAS  Google Scholar 

  32. a) Dinega, D.P. and Bawendi, M.G. (1999) Eine aus der Lösung zugängliche neue Kristallstruktur von Cobalt, Angew. Chem. 111, 1906–1909; Angew. Chem. Int. Ed. 38, 1788-1791; b) Puntes, V.F., Krishnan, K.M., and Alivisatos, P. (2001) Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles, Appl. Phys. Lett. 78, 2187-2189.

    Google Scholar 

  33. Laidler, H. and O’Grady, K. (1998) Crystallographic effects in Co alloy media, www.datatech-online.com 1, 93–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hilgendorff, M., Giersig, M. (2003). Synthesis of Colloidal Magnetic Nanoparticles. In: Liz-Marzán, L.M., Giersig, M. (eds) Low-Dimensional Systems: Theory, Preparation, and Some Applications. NATO Science Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0143-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0143-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1169-6

  • Online ISBN: 978-94-010-0143-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics