Skip to main content

Molecular Control of Electron Transfer Events Within and Between Biomolecules

  • Chapter
Molecular Electronics: Bio-sensors and Bio-computers

Part of the book series: NATO Science Series ((NAII,volume 96))

Abstract

We are engaged in theoretical studies of electron transfer reactions in proteins, protein- protein complexes, and DNA. This paper summarizes our recent advances in exploring the relationships between structure and function in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beratan, D.N., and Onuchic, J.N. (1996) Chapter 2: The protein bridge between redox centers, in D.S. Bendall (editor), Protein Electron Transfer, BIOS Scientific Publishers, Oxford, pp. 2342.

    Google Scholar 

  2. Skourtis, S.S., and Beratan, D.N. (2001) Multi-center and multi-electron transfer in biology, in V. Balzani (editor), Electron Transfer Reactions, Vol. 1: Theory and Principles, Wiley-VCH (Weinheim),, pp. 109–125.

    Google Scholar 

  3. Walker, G.C., and Beratan, D.N. (2001) Electron Transfer Reactions, in J. Moore and N. Spencer (eds.), Encyclopedia of Chemical Physics and Physical Chemistry, Institute of Physics Publishing,, Institute of Physics Press.

    Google Scholar 

  4. Babini, E., Bertini, I., Borsari, M., Capozzi, F., Luchinat, C, Zhang, X.Y., Moura, G.L.C., Kurnikov, I.V., Beratan, D.N., Ponce, A., DiBilio, A.J., Winkler, J.R., and Gray, H.B. (2000) Bond-mediated electron tunneling in ruthenium-modified highpotential iron-sulfur protein, J. Am. Chem. Soc, 122, pp. 4532–4533.

    Google Scholar 

  5. Jones, M., Kumikov, I.V., and Beratan, D.N. (2002) The nature of tunneling pathway and average packing density models for protein-mediated electron transfer, J. Phys. Chem. A, 106, 2002–2006.

    Article  CAS  Google Scholar 

  6. Beratan, D.N., Betts, J.N., and Onuchic, J.N. (1991) Protein electron transfer rates are predicted to be set by the bridging secondary and tertiary structure, Science, 252, pp. 1285–1288.

    Article  PubMed  CAS  Google Scholar 

  7. Regan, J.J., Risser, S.M., Beratan, D.N., and Onuchic, J.N. (1993) Protein electron transport: single versus multiple pathways, J. Phys, Chem., 97, pp. 13083–13088.

    Article  CAS  Google Scholar 

  8. Beratan, D.N., Onuchic, J.N., Winkler, JR., and Gray, H.B. (1992) Electron tunneling pathways in proteins, Science, 258, pp. 1740–1741.

    Article  PubMed  CAS  Google Scholar 

  9. Crane, B.R., Di Bilio, A.J., Winkler, J.R., Gray, H.B. (2001) Electron tunneling in single crystals of pseudomonas aeruginosa azurins, J. Am. Chem. Soc, 123, pp. 11623–11631.

    Article  PubMed  CAS  Google Scholar 

  10. Ponce, A., Gray, H.B., Winkler, J.R., (2000) Electron tunneling through water: Oxidative quenching of electronically excited Ru(tpy)(2)(2+)(tpy=2,2’: 6,2-terpyridine)by ferric ions in aqueous glasses at 77K, J. Am. Chem. Soc, 122, pp. 8187–8191.

    Article  CAS  Google Scholar 

  11. Winkier, J.R., Di Bilio, A.J., Farrow, N.A., R ichards, J.H, Gray, H.B. (1999) E lectron t unneling in biological molecules, Pure and Applied Chemistry, 71, pp. 1753–1764.

    Article  Google Scholar 

  12. Gray, H.B., Winkler, J.R. Electron transfer in proteins, Annu. Rev. Biochem., 65, 537–561 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Page, C.C, Moser, C.C. Chen, X.X., Dutton, P.L. (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction, Nature, 402, pp. 47–52.

    Article  PubMed  CAS  Google Scholar 

  14. deRege, P.J.F., Williams, S.A., Therien, M.J. (1995) Direct evaluation of electronic coupling mediated by hydrogen-bonds-implications for biological electron-transfer, Science, 269, pp. 1409–1413.

    Article  CAS  Google Scholar 

  15. Miller, N.E., Wander, M.C., Cave, R.J. (1999) A theoretical study of the electronic coupling element for electron transfer in water, J. Phys. Chem. A, 103, pp. 1084–1093.

    Google Scholar 

  16. Kawatsu, T., Kakitani, T, Yamato, T. (2002) On the anomaly of the tunneling matrix element in long-range electron transfer, J. Phys. Chem. B, 106, pp. 5068–5074.

    Article  CAS  Google Scholar 

  17. Liang, Z.X., Nocek, J.M., Huang, K.H., Hayes, R.T., Kurnikov, I.V., Beratan, D.N., and Hoffman, B.M. (2002) Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b5, J. Am. Chem. Soc, 124, pp. 6849–6859.

    Article  PubMed  CAS  Google Scholar 

  18. Nocek, J.M., Zhou, J., DeForest, S., Priyadarshy, S., Beratan, D.N., Onuchic, J.N., Hoffman, B.M. (1996) Theory and practice of electron transfer within proteinprotein complexes: Application to the multi-domain binding of cytochrome c by cytochrome c peroxidase, Chem. Rev., 96, pp. 2459–2489.

    Article  PubMed  CAS  Google Scholar 

  19. Davidson, V.L. (2000) What controls the rates of interprotein electron-transfer reactions? Ace. Chem. Res., 33, pp. 87–93.

    Article  CAS  Google Scholar 

  20. Roitberg, A., Holden, M., Mayhew, M., Kurnikov, I.V., Beratan, D.N., and Vilker, V. (1998) Binding and electron transfer between putidaredoxin and cytochrome P-450cam (cyplOl). Theory and experiments, J. Am. Chem. Soc, 120, pp. 8927–8932.

    Article  CAS  Google Scholar 

  21. Liang, Z.X., Nocek, J.M., Kurnikov, I.V., Beratan, D.N., and Hoffman, B.M. (2000) Electrostatic control of electron transfer between myoglobin and cytochrome b5: effect of methylating the heme propionates of Zn-myoglobin, J. Am. Chem. Soc, 122, pp. 3552–3553.

    Article  CAS  Google Scholar 

  22. Liang, Z.X., Kurnikov, I.V., Nocek, J.M., Mauk, A.G., Beratan, D.N., Hoffman, B.M. (2002) Mb-surface charge mutations within the [Mb, b5] protein-protein interface: Application of new ‘functional docking’ computations that link electrostatic docking with reactivity in dynamic ET complexes, in preparation.

    Google Scholar 

  23. Kumikov, I.V., Charnley, A.K., and Beratan, D.N. (2001) From ATP to electron transfer: electrostatics and free energy transduction in nitrogenase, J. Phys. Chem. B, 105, pp. 5359–5367.

    Article  Google Scholar 

  24. Wan, C.Z., Fiebig, T., Schiemann, O., Barton, J.K., Zewail, A.H. (2000) Femtosecond direct observation of charge transfer between bases in DNA, Proc. Nad. Acad. Sci. USA, 97, pp. 14052–14055.

    Article  CAS  Google Scholar 

  25. Wan, C.Z., Fiebig, T., Kelley, SO., Treadway, C.R., Barton, J.K., Zewail, A.H. (1999) Femtosecond dynamics of DNA-mediated electron transfer, Proc. Nad. Acad. Sci. USA, 96, pp. 6014–6019.

    Article  CAS  Google Scholar 

  26. Giese, B. (2000) Long-distance charge transport in DNA: The hopping mechanism, Ace. Chem. Res., 33, pp. 631–636.

    Article  CAS  Google Scholar 

  27. Schuster, G.B. (2000) Long-range charge transfer in DNA: Transient structural distortions control the distance dependence, Ace. Chem. Res., 33, pp. 253–260.

    Article  CAS  Google Scholar 

  28. Lewis, F.D., Letsinger, R.L., Wasielewski, M.R. (2001) Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins, Ace Chem. Res., 34, pp. 159–170.

    Article  CAS  Google Scholar 

  29. Sugiyama, H., Saito, I. (1996) Theoretical studies of GC-specific photocleavage of DNA via electron transfer: Significant lowering of ionization potential and 5’-localization of HOMO of stacked GG bases in B-f’orm DNA, J. Am. Chem. Soc, 118, pp. 7063–7068.

    Article  CAS  Google Scholar 

  30. Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M.E, (1999) On the mechanism of long-range electron transfer through DNA, Angew Chem. Int. Edit., 38, pp. 996–998.

    Article  CAS  Google Scholar 

  31. Lewis, F.D., Liu, X.Y., Liu, J.Q., Hayes, R.T., Wasielewski, M.R. (2000) Dynamics and equilibria for oxidation of G,GG, and GGG sequences in DNA hairpins, J Am. Chem. Soc, 122, pp. 12037–12038.

    Article  CAS  Google Scholar 

  32. Kurnikov, I.V., Tong, G.S.M., Madrid, M., and Beratan, D.N. (2002) Hole size in oxidized double helical DNA: Competition between quantum delocalization and solvation localization energies, J. Phys Chem 106, pp. 7–10.

    Article  CAS  Google Scholar 

  33. Murphy, C.J., Arkin, M.R., Jenkins, Y., Ghatlia, N.D., Bossman, S.H., Turro, N.J., Barton, J.K. (1993) Long-range photoinduced electron-transfer through a DNA helix, Science, 262, pp. 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  34. Meade, T.J., Kayyem, J.F. (1995) Electron-transfer through DNA-site-specific modification of duplex DNA with ruthenium donors and acceptors, Angewandte Chemie-International, Edition in English, 34, pp 352–354.

    Article  CAS  Google Scholar 

  35. Tong, G.S.M., Kumikov, I.V., and Beratan, D.N. (2002) Tunneling energy effects on GC oxidation in DNA, J. Phys. Chem. B, 106, pp. 2381–2392.

    Article  CAS  Google Scholar 

  36. Beratan, D.N., Priyadarshy, S., and Risser, S.M. (1997) DNA: wire or insulator?, Chem. andBiol., 4, pp. 3–8.

    Article  CAS  Google Scholar 

  37. Priyadarshy, S., Risser, S.M., and, Beratan, D.N. (1996) DNA is not a molecular wire: protein-like electron transfer predicted in an extended pi-electron system, J. Phys. Chem., 100, pp. 17678–17682.

    Article  CAS  Google Scholar 

  38. Risser, S.M., Beratan, D.N., Meade, T.J. (1993) Electron transfer in DNA: Predictions of exponential growth and decay of coupling with donor-acceptor distance, J. Am. Chem. Soc, 115, pp. 2508–2510.

    Article  CAS  Google Scholar 

  39. Berlin, Y.A., Burin, A.L., Ratner, M.A. (2001) Charge hopping in DNA, J. Am. Chem. Soc, 123(2), pp. 260–268.

    Google Scholar 

  40. Berlin, Y.A., Grozema, F. C, Siebbeles, L.D.A. (2000) Mechanism of charge migration through DNA: Molecular wire behavior, single-step tunneling or hopping? J. Am. Chem. Soc, 122, pp. 10903–10909.

    Article  Google Scholar 

  41. Bixon, M., and Jortner, J. (2001) Charge transport in DNA via thermally induced hopping, J. Am. Chem. Soc, 123, pp. 12556–12567.

    Article  PubMed  CAS  Google Scholar 

  42. Jortner, J., Bixon, M., Voityuk, A.A., Rosch, N. (2002) Superexchange mediated charge hopping in DNA, J. Phys. Chem. A, 106, pp. 7599–7606.

    Google Scholar 

  43. Lewis, F.D., Liu, J., Weigel, W., Rettig, W., Kurnikov, I.V., and Beratan, D.N. (2002), Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA, Proc. Natl. Acad. Sci. USA, 99, pp. 12536–12541.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beratan, D.N. (2003). Molecular Control of Electron Transfer Events Within and Between Biomolecules. In: Barsanti, L., Evangelista, V., Gualtieri, P., Passarelli, V., Vestri, S. (eds) Molecular Electronics: Bio-sensors and Bio-computers. NATO Science Series, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0141-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0141-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1212-9

  • Online ISBN: 978-94-010-0141-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics