Molecular Control of Electron Transfer Events Within and Between Biomolecules

  • David N. Beratan
Part of the NATO Science Series book series (NAII, volume 96)


We are engaged in theoretical studies of electron transfer reactions in proteins, protein- protein complexes, and DNA. This paper summarizes our recent advances in exploring the relationships between structure and function in these systems.


Electron Transfer Electron Tunneling Electronic Coupling Solvation Free Energy Distance Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beratan, D.N., and Onuchic, J.N. (1996) Chapter 2: The protein bridge between redox centers, in D.S. Bendall (editor), Protein Electron Transfer, BIOS Scientific Publishers, Oxford, pp. 2342.Google Scholar
  2. 2.
    Skourtis, S.S., and Beratan, D.N. (2001) Multi-center and multi-electron transfer in biology, in V. Balzani (editor), Electron Transfer Reactions, Vol. 1: Theory and Principles, Wiley-VCH (Weinheim),, pp. 109–125.Google Scholar
  3. 3.
    Walker, G.C., and Beratan, D.N. (2001) Electron Transfer Reactions, in J. Moore and N. Spencer (eds.), Encyclopedia of Chemical Physics and Physical Chemistry, Institute of Physics Publishing,, Institute of Physics Press.Google Scholar
  4. 4.
    Babini, E., Bertini, I., Borsari, M., Capozzi, F., Luchinat, C, Zhang, X.Y., Moura, G.L.C., Kurnikov, I.V., Beratan, D.N., Ponce, A., DiBilio, A.J., Winkler, J.R., and Gray, H.B. (2000) Bond-mediated electron tunneling in ruthenium-modified highpotential iron-sulfur protein, J. Am. Chem. Soc, 122, pp. 4532–4533.Google Scholar
  5. 5.
    Jones, M., Kumikov, I.V., and Beratan, D.N. (2002) The nature of tunneling pathway and average packing density models for protein-mediated electron transfer, J. Phys. Chem. A, 106, 2002–2006.CrossRefGoogle Scholar
  6. 6.
    Beratan, D.N., Betts, J.N., and Onuchic, J.N. (1991) Protein electron transfer rates are predicted to be set by the bridging secondary and tertiary structure, Science, 252, pp. 1285–1288.PubMedCrossRefGoogle Scholar
  7. 7.
    Regan, J.J., Risser, S.M., Beratan, D.N., and Onuchic, J.N. (1993) Protein electron transport: single versus multiple pathways, J. Phys, Chem., 97, pp. 13083–13088.CrossRefGoogle Scholar
  8. 8.
    Beratan, D.N., Onuchic, J.N., Winkler, JR., and Gray, H.B. (1992) Electron tunneling pathways in proteins, Science, 258, pp. 1740–1741.PubMedCrossRefGoogle Scholar
  9. 9.
    Crane, B.R., Di Bilio, A.J., Winkler, J.R., Gray, H.B. (2001) Electron tunneling in single crystals of pseudomonas aeruginosa azurins, J. Am. Chem. Soc, 123, pp. 11623–11631.PubMedCrossRefGoogle Scholar
  10. 10.
    Ponce, A., Gray, H.B., Winkler, J.R., (2000) Electron tunneling through water: Oxidative quenching of electronically excited Ru(tpy)(2)(2+)(tpy=2,2’: 6,2-terpyridine)by ferric ions in aqueous glasses at 77K, J. Am. Chem. Soc, 122, pp. 8187–8191.CrossRefGoogle Scholar
  11. 11.
    Winkier, J.R., Di Bilio, A.J., Farrow, N.A., R ichards, J.H, Gray, H.B. (1999) E lectron t unneling in biological molecules, Pure and Applied Chemistry, 71, pp. 1753–1764.CrossRefGoogle Scholar
  12. 12.
    Gray, H.B., Winkler, J.R. Electron transfer in proteins, Annu. Rev. Biochem., 65, 537–561 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    Page, C.C, Moser, C.C. Chen, X.X., Dutton, P.L. (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction, Nature, 402, pp. 47–52.PubMedCrossRefGoogle Scholar
  14. 14.
    deRege, P.J.F., Williams, S.A., Therien, M.J. (1995) Direct evaluation of electronic coupling mediated by hydrogen-bonds-implications for biological electron-transfer, Science, 269, pp. 1409–1413.CrossRefGoogle Scholar
  15. 15.
    Miller, N.E., Wander, M.C., Cave, R.J. (1999) A theoretical study of the electronic coupling element for electron transfer in water, J. Phys. Chem. A, 103, pp. 1084–1093.Google Scholar
  16. 16.
    Kawatsu, T., Kakitani, T, Yamato, T. (2002) On the anomaly of the tunneling matrix element in long-range electron transfer, J. Phys. Chem. B, 106, pp. 5068–5074.CrossRefGoogle Scholar
  17. 17.
    Liang, Z.X., Nocek, J.M., Huang, K.H., Hayes, R.T., Kurnikov, I.V., Beratan, D.N., and Hoffman, B.M. (2002) Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b5, J. Am. Chem. Soc, 124, pp. 6849–6859.PubMedCrossRefGoogle Scholar
  18. 18.
    Nocek, J.M., Zhou, J., DeForest, S., Priyadarshy, S., Beratan, D.N., Onuchic, J.N., Hoffman, B.M. (1996) Theory and practice of electron transfer within proteinprotein complexes: Application to the multi-domain binding of cytochrome c by cytochrome c peroxidase, Chem. Rev., 96, pp. 2459–2489.PubMedCrossRefGoogle Scholar
  19. 19.
    Davidson, V.L. (2000) What controls the rates of interprotein electron-transfer reactions? Ace. Chem. Res., 33, pp. 87–93.CrossRefGoogle Scholar
  20. 20.
    Roitberg, A., Holden, M., Mayhew, M., Kurnikov, I.V., Beratan, D.N., and Vilker, V. (1998) Binding and electron transfer between putidaredoxin and cytochrome P-450cam (cyplOl). Theory and experiments, J. Am. Chem. Soc, 120, pp. 8927–8932.CrossRefGoogle Scholar
  21. 21.
    Liang, Z.X., Nocek, J.M., Kurnikov, I.V., Beratan, D.N., and Hoffman, B.M. (2000) Electrostatic control of electron transfer between myoglobin and cytochrome b5: effect of methylating the heme propionates of Zn-myoglobin, J. Am. Chem. Soc, 122, pp. 3552–3553.CrossRefGoogle Scholar
  22. 22.
    Liang, Z.X., Kurnikov, I.V., Nocek, J.M., Mauk, A.G., Beratan, D.N., Hoffman, B.M. (2002) Mb-surface charge mutations within the [Mb, b5] protein-protein interface: Application of new ‘functional docking’ computations that link electrostatic docking with reactivity in dynamic ET complexes, in preparation.Google Scholar
  23. 23.
    Kumikov, I.V., Charnley, A.K., and Beratan, D.N. (2001) From ATP to electron transfer: electrostatics and free energy transduction in nitrogenase, J. Phys. Chem. B, 105, pp. 5359–5367.CrossRefGoogle Scholar
  24. 24.
    Wan, C.Z., Fiebig, T., Schiemann, O., Barton, J.K., Zewail, A.H. (2000) Femtosecond direct observation of charge transfer between bases in DNA, Proc. Nad. Acad. Sci. USA, 97, pp. 14052–14055.CrossRefGoogle Scholar
  25. 25.
    Wan, C.Z., Fiebig, T., Kelley, SO., Treadway, C.R., Barton, J.K., Zewail, A.H. (1999) Femtosecond dynamics of DNA-mediated electron transfer, Proc. Nad. Acad. Sci. USA, 96, pp. 6014–6019.CrossRefGoogle Scholar
  26. 26.
    Giese, B. (2000) Long-distance charge transport in DNA: The hopping mechanism, Ace. Chem. Res., 33, pp. 631–636.CrossRefGoogle Scholar
  27. 27.
    Schuster, G.B. (2000) Long-range charge transfer in DNA: Transient structural distortions control the distance dependence, Ace. Chem. Res., 33, pp. 253–260.CrossRefGoogle Scholar
  28. 28.
    Lewis, F.D., Letsinger, R.L., Wasielewski, M.R. (2001) Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins, Ace Chem. Res., 34, pp. 159–170.CrossRefGoogle Scholar
  29. 29.
    Sugiyama, H., Saito, I. (1996) Theoretical studies of GC-specific photocleavage of DNA via electron transfer: Significant lowering of ionization potential and 5’-localization of HOMO of stacked GG bases in B-f’orm DNA, J. Am. Chem. Soc, 118, pp. 7063–7068.CrossRefGoogle Scholar
  30. 30(a).
    Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M.E, (1999) On the mechanism of long-range electron transfer through DNA, Angew Chem. Int. Edit., 38, pp. 996–998.CrossRefGoogle Scholar
  31. 30(b).
    Lewis, F.D., Liu, X.Y., Liu, J.Q., Hayes, R.T., Wasielewski, M.R. (2000) Dynamics and equilibria for oxidation of G,GG, and GGG sequences in DNA hairpins, J Am. Chem. Soc, 122, pp. 12037–12038.CrossRefGoogle Scholar
  32. 31.
    Kurnikov, I.V., Tong, G.S.M., Madrid, M., and Beratan, D.N. (2002) Hole size in oxidized double helical DNA: Competition between quantum delocalization and solvation localization energies, J. Phys Chem 106, pp. 7–10.CrossRefGoogle Scholar
  33. 32.
    Murphy, C.J., Arkin, M.R., Jenkins, Y., Ghatlia, N.D., Bossman, S.H., Turro, N.J., Barton, J.K. (1993) Long-range photoinduced electron-transfer through a DNA helix, Science, 262, pp. 1025–1029.PubMedCrossRefGoogle Scholar
  34. 33.
    Meade, T.J., Kayyem, J.F. (1995) Electron-transfer through DNA-site-specific modification of duplex DNA with ruthenium donors and acceptors, Angewandte Chemie-International, Edition in English, 34, pp 352–354.CrossRefGoogle Scholar
  35. 34.
    Tong, G.S.M., Kumikov, I.V., and Beratan, D.N. (2002) Tunneling energy effects on GC oxidation in DNA, J. Phys. Chem. B, 106, pp. 2381–2392.CrossRefGoogle Scholar
  36. 35.
    Beratan, D.N., Priyadarshy, S., and Risser, S.M. (1997) DNA: wire or insulator?, Chem. andBiol., 4, pp. 3–8.CrossRefGoogle Scholar
  37. 36.
    Priyadarshy, S., Risser, S.M., and, Beratan, D.N. (1996) DNA is not a molecular wire: protein-like electron transfer predicted in an extended pi-electron system, J. Phys. Chem., 100, pp. 17678–17682.CrossRefGoogle Scholar
  38. 37.
    Risser, S.M., Beratan, D.N., Meade, T.J. (1993) Electron transfer in DNA: Predictions of exponential growth and decay of coupling with donor-acceptor distance, J. Am. Chem. Soc, 115, pp. 2508–2510.CrossRefGoogle Scholar
  39. 38.
    Berlin, Y.A., Burin, A.L., Ratner, M.A. (2001) Charge hopping in DNA, J. Am. Chem. Soc, 123(2), pp. 260–268.Google Scholar
  40. 39.
    Berlin, Y.A., Grozema, F. C, Siebbeles, L.D.A. (2000) Mechanism of charge migration through DNA: Molecular wire behavior, single-step tunneling or hopping? J. Am. Chem. Soc, 122, pp. 10903–10909.CrossRefGoogle Scholar
  41. 40.
    Bixon, M., and Jortner, J. (2001) Charge transport in DNA via thermally induced hopping, J. Am. Chem. Soc, 123, pp. 12556–12567.PubMedCrossRefGoogle Scholar
  42. 41.
    Jortner, J., Bixon, M., Voityuk, A.A., Rosch, N. (2002) Superexchange mediated charge hopping in DNA, J. Phys. Chem. A, 106, pp. 7599–7606.Google Scholar
  43. 42.
    Lewis, F.D., Liu, J., Weigel, W., Rettig, W., Kurnikov, I.V., and Beratan, D.N. (2002), Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA, Proc. Natl. Acad. Sci. USA, 99, pp. 12536–12541.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • David N. Beratan
    • 1
  1. 1.Departments of Chemistry and BiochemistryDuke UniversityDurhamUSA

Personalised recommendations