Skip to main content

Optical Waveguide Lightmode Spectroscopy and Biocomputing

  • Chapter
Molecular Electronics: Bio-sensors and Bio-computers

Part of the book series: NATO Science Series ((NAII,volume 96))

Abstract

A concept of a new application based on the outstanding nonlinear optical properties of the chromoprotein bacteriorhodopsin was investigated. Using the Optical Waveguide Lightmode Spectroscopy technique on dried bacteriorhodopsin films gave us the possibility to exploit the large refractive index changes corresponding to the absorption changes during the photocycle. The results demonstrate the applicability of this protein as an active nonlinear optical material in all-optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Service, R.F. (1995) 2 steps for light-altering polymers, Science 268, 1570.

    Article  PubMed  CAS  Google Scholar 

  2. Birge, R.R. (1995) Protein based computers, Sci. Am. 272, 90–95.

    Article  CAS  Google Scholar 

  3. Hampp, N. (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chem. Rev. 100, 1755–1776.

    Article  PubMed  CAS  Google Scholar 

  4. Lozier, R.H. and Niederberger, W. (1977) The photochemical cycle of bacteriorhodopsin, Fed. Proc. 36, 1805–1809.

    PubMed  CAS  Google Scholar 

  5. Gergely, C, Zimányi, L. and Váró, G. (1997) Bacteriorhodopsin intermediate spectra determined over a wide pH range, J. Phys. Chem. B 101, 9390–9395.

    Article  CAS  Google Scholar 

  6. Dér, A., Hargittai, P. and Simon, J. (1985) Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel, J. Biochem. Bioph. Meth. 10, 295–300.

    Article  Google Scholar 

  7. Váró, G. and Keszthelyi, L. (1983) Photoelectric signals from dried oriented purple membranes of Halobacterium halobium, Biophys. J. 43, 47–51.

    Article  PubMed  Google Scholar 

  8. Iizuka, K. (1987) Integrated optics, in T. Tamir (ed.), Engineering Optics, Springer, London, pp. 408–467.

    Google Scholar 

  9. Tiefenthaler, K. and Lukosz, W. (1989) Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 6, 209–220.

    Article  CAS  Google Scholar 

  10. Guemori, L., Ogier, J., Zekhnini, Z. and Ramsden, J J. (2000) The architecture of fibronectin at surfaces, J Chem. Phys. 113, 8183–8186.

    Article  Google Scholar 

  11. Zeisel, D. and Hampp, N. (1992) Spectral relationship of light-induced refractive-index and absorption changes in bacteriorhodopsin films containing wildtype BR WT and the variant BR D96N, J. Phys. Chem-US 96, 7788–7792.

    Article  CAS  Google Scholar 

  12. Zhang, C.P., Song, Q.W., Ku, C.Y., Gross, R.B. and Birge, R.R. (1994) Determination of the refractive-index of a bacteriorhodopsin film, Opt. Lett. 19, 1409–1411.

    Article  PubMed  CAS  Google Scholar 

  13. Váró, G. (2001) The study of dried oriented purple membrane samples, in A. Dér and L. Keszthelyi (eds.), Conference Proceedings of Bioelectronic Applications of Photochromic Pigments, IOS Press, Amsterdam, pp. 149–162.

    Google Scholar 

  14. Ormos, P., Dancsházy, Z. and Keszthelyi, L. (1980) Electric-response of a back photoreaction in the bacteriorhodopsin photocycle, Biophys. J. 31, 207–213.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

FÁBiÁn, L., Oroszi, L., Ormos, P., DÉr, A. (2003). Optical Waveguide Lightmode Spectroscopy and Biocomputing. In: Barsanti, L., Evangelista, V., Gualtieri, P., Passarelli, V., Vestri, S. (eds) Molecular Electronics: Bio-sensors and Bio-computers. NATO Science Series, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0141-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0141-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1212-9

  • Online ISBN: 978-94-010-0141-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics