Skip to main content

Quantum Mechanical Design of Light Driven Molecular Logical Machines and Elements of Molecular Quantum Computers

  • Chapter
Book cover Molecular Electronics: Bio-sensors and Bio-computers

Part of the book series: NATO Science Series ((NAII,volume 96))

Abstract

Quantum m echanically designed hardware of molecular electronics digital and NMR quantum computers are presented in this article. The results of light induced internal molecular motions in azo-dyes molecules have been used for the design and density functional theory time-dependent (DFT-TD) calculations of light driven logically controlled (OR function) molecular machines composed from organic photoactive electron donor dithieno[3,2-b:2’,3’-d]thiophene or ferrocene molecules and electron accepting and moving azo-benzene fragment. Applied DFT-TD method and our visualization program showed from which fragments electron is hopping in various excited states. Quantum mechanical investigations of hydrogen and nitrogen atom Nuclear Magnetic Resonance (NMR) values of Cu, Co, Zn, Mn and Fe biliverdin derivatives and their dimers and aza-fullerene C48N12 adducts using ab initio Hartree- Fock (HF) and DFT methods indicate that these modified derivatives should generate from one to seven and eleven, twelve, eighteen, nineteen Quantum Bits (QuBits).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tamulis, A., Tamuliene, J. (2001) Ab Initio Q uantum Chemical Design of Single Supermolecule Photoactive Machines and Molecular Logical Devices, Report to the contract US AF EOARD contract F61775-00-WE050

    Google Scholar 

  2. Tamulis, A., Rinkevicius, Z., Tamuliene, J., Tamulis, V., Graja, A., Gaigalas, A.K.. (2002) Quantum Chemical Design of Light Driven Molecular Logical Machines, in A. Graja, B.R. Bulka, F. Kajzar (eds.) NATO Science Series II. Mathematics, Physics and Chemistry, Molecular Low Dimensional and Nanostructured Materials for Advanced Applications″, Kluwer Academic Publishers, Dordrecht 59 209–219.

    Google Scholar 

  3. Tamulis, A., Tamuliene, J., Tamulis, V. (2002) Quantum Mechanical Design of Photoactive Molecular Machines and Logical Devices, chapter in American Scientific Publishers Handbook on Photochemistry and Photobiology, accepted for publication.

    Google Scholar 

  4. Tamulis, A., Stumbrys, E., Tamulis V., Tamuliene, J. (1996) Quantum Mechanical Investigations of Photoactive Molecules, Supermolecules, Supramolecules and Design of Basic Elements Molecular Computers, in F. Kajzar, V.M. Agranovich, C. Y-C. Lee (eds.) NATO ASI series, High Technology, vol. 9, Photoactive Organic Materials: Science and Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 53–66.

    Google Scholar 

  5. Tamulis, A., Tamulis, V. (1998) Design of Basic Elements of Molecular Computers Based on Quantum Chemical Investigations of Photoactive Organic Molecules, Proceedings of the SP/E Photonics WEST, Conference on Optoelectronic Integrated Circuits 3290, 315–324.

    Google Scholar 

  6. Tamulis, A., Tamulis,V., Tamuliene, J. (1998) Quantum mechanical design of molecular implementation of two, three and four variable logic functions for electronically genome regulation, Viva Origino 26, 127–146.

    CAS  Google Scholar 

  7. Tamulis, A., Tamuliene, J, Balevicius, M. L, Nunzi, J.M. (2000) Quantum Chemical Design of Multivariable Anisotropic Random-Walk Molecular Devices Based on Stilbene and Azo-Dyes, Mol. Cryst. Liq. Cryst. 354, 475–484.

    Article  CAS  Google Scholar 

  8. Tamulis, A., Tamuliene, J., Balevicius, M.L., Nunzi, J.-M. (2000) Quantum mechanical investigations of photoactive molecules and design of molecular machine and logical devices in Bradley, D.D.C., Kippelen, B. (eds.) Organic Photonics Materials and Devices II, Proceedings of SPIE 3939, 61–68.

    Google Scholar 

  9. Tamulis, A., Rinkevicius, Z., Tamuliene, J., Tamulis, V., Balevicius, M.L., Graja, A. (2001) Ab initio quantum chemical design of supermolecule logical devices, in Grote, J.G., Heyler, R.A. (eds.) Optoelectronic Integrated Circuits and Packaging V, Proceedings of SPIE 4290, 82–93.

    Google Scholar 

  10. Tamulis, A., Rinkevicius, Z., Tamulis,V., Tamuliene, J., Kama, S.P., Stickley, CM. (2001) Ab initio quantum chemical design of photoactive molecular logical devices, Nonlinear Optics 27, 385–393.

    CAS  Google Scholar 

  11. Tamuliene, J., Tamulis, A. (2001) Quantum chemical ab initio design of molecular electronics tools for biotechnologies, Biotech News International 6, 12–14.

    Google Scholar 

  12. Tamulis, A., Rinkevicius, Z., Tamuliene, J. (2001) Molecular Classical Computer Basic Elements, in T. Gonis and P.E.A. Turchi, (eds.), NATO Science Series III Computer and Systems Sciences, Decoherence and Implication in Quantum Computation and Information Transfer, IOS Press 182, 358–365.

    Google Scholar 

  13. Kuciauskas, D., Liddell, P.A., Moore, A.L., Moore, T.A. and Gust, D. (1998) Magnetic Switching of Charge Separation Lifetimes in Artificial Photosynthetic Reaction Centers, J. Am. Chem. Soc. 120, 4398–4405.

    Article  Google Scholar 

  14. Leatherman, G., Durantini, E.N., Gust, D., Moore, T.A., Moore, A.L., Stone, S., Zhou, Z., Rez, P., Liu, Y.Z., Lindsay, S.M. (1999) Carotene as a Molecular Wire: Conducting Atomic Force Microscopy, J. Phys. Chem. B 103, 4006–4010.

    Google Scholar 

  15. Jolliffe, K.A., Langrford, S.J., Ranasinghe, M.G., Shephard, M.J., Paddon-Row, M.N. (1999) Design and Synthesis of Two (Pseudo)Symmetric Giant Trichromophoric Systems Containing the C60 Chromophore, J. Org. Chem. 64, 1238–1246.

    Article  CAS  Google Scholar 

  16. Reed, M.A., Tour, J.M. (2000) Computing with Molecules, Scientific American 282, 86.

    Article  PubMed  CAS  Google Scholar 

  17. Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Jr. Price, D.W., Rawlett, A.M., Allara, D.L., Tour, J.M., Weiss, P.S. (2001) Single Molecular Switches, Science 292, 2303–2307.

    Article  PubMed  CAS  Google Scholar 

  18. Armaroli, N., Balzani, V., Collin, J.-P., Gavina, P., Sauvage, J.-P., Ventura, B. (1999) Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions, J. Am. Chem. Soc. 121, 4397–4408.

    Article  CAS  Google Scholar 

  19. Ashton, P.R., Ballardini, R., Balzani, V., Credi, A., Dress, K.L., Ishow, E., KJeverlaan, C.J., Kocian, O., Preece, J.A., Spencer, N., Stoddart, J.F., Venturi, M. (2000) Molecular meccano. Part 61. A photochemically-driven molecular-level abacus, Chem. Eur. J. 6, 3558–3574.

    Article  PubMed  CAS  Google Scholar 

  20. Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F. (2000) Artificial molecular machines Angew. Chem. Int. Ed. 39, 3348–3391.

    Article  CAS  Google Scholar 

  21. Luo, Y., Collier, C.P., Jeppesen, J.O., Nielsen, K.A., Delonno, E., Ho, G., Perkins, J., Tseng, H.-R, Yamamoto, T., Stoddart, J.F., Heath, J.R. (2002) Two-dimensional molecular Electronics Circuits, Chem. Phys. Chem. 3, 519–525.

    Article  PubMed  CAS  Google Scholar 

  22. Koumura, N., Ziljstra, R.W.J., van Delden, R.A., Harada, N., Feringa, B.L. (1999) Light-driven monodirectional molecular rotor, Nature 401, 152–155.

    Article  PubMed  CAS  Google Scholar 

  23. Barett, C.J., Rochon, P.L., Natansohn, A.L. (1998) Model of laser driven mass transport in thin films of dye-functionalized polymers, J. Chem. Phys. 109, 1505–1516.

    Article  Google Scholar 

  24. Kumar, J., Li, L., Kim, D.Y., Jiang, X.L., Lee, T.S., Tripathy, S.K. (1998) Gradient Force: the Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers, Appl. Phys. Lett. 72, 2096–2098.

    Article  CAS  Google Scholar 

  25. Lefin, P., Fiorini, C. Nunzi, J.-M. (1998) Anisotropy of the photoinduced translation diffusion of azobenzene dyes in polymer matrices, Pure Appl. Opt. 7, 71–82.

    Article  CAS  Google Scholar 

  26. Bouwmeester, D., Ekert A., Zeilinger A. (2000) The Physics of Quantum Information, Springer.

    Google Scholar 

  27. Balch, A.L., Mazzanti, M., Noll, B.C, Olmstead, M.M. (1993) Geometric and electronic structure and dioxygen sensitivity of the copper complex of octaethylbilindione, a biliverdin analog, J. Am. Chem. Soc, 115, 12206–12207.

    Article  CAS  Google Scholar 

  28. Koemer, R., Olmstead, M.M., Van Calcar, P.M., Winkler, K., Balch, A.L. (1998) Reactivity of the verdoheme analogues, 5-oxaporhyrin complexes of Cobalt(II) and Zinc(II) with nucleophiles: opening of the planar macrocycle by alkoxide addition to form helical complexes, Inorg. Chem., 37, 982–988.

    Article  Google Scholar 

  29. Balch, A.L., Mazzanti, M.,. Noll, B.C, Olmstead, M.M. (1994) Coordination patterns for Biliverdin-type ligands. Helical and linked helical units in four-coordinated Cobalt and five-coordinated Manganese(IIl) complex of octaethylbilindione, J. Am. Chem. Soc., 116, 9114–9122.

    Article  CAS  Google Scholar 

  30. Koerner, R., Latos-Grazynski, L., Balch, A.L. (1998) Models for verdohemehydrolysis. Paramagnetic products from the ring opening of verdohemes, 5-oxaporphyrin complexes of iron(II), with methoxide ion, J. Am. Chem. Soc, 120, 9246–9255.

    Article  CAS  Google Scholar 

  31. Parr, R.G., W. Yang, W. (1989) Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press: Oxford.

    Google Scholar 

  32. Schlegel, H.B., (1994) in D.R. Yarkony (ed.), Modern Electronic Structure Theory, vol. 2., World Scientific Publishing: Singapore.

    Google Scholar 

  33. Casida, M.E., Salahub, D.R. (2000) Asymptotic correction approach to improving approximate exchange-correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra J. Chem. Phys. 113, 8918–8935.

    Article  CAS  Google Scholar 

  34. Perdew, J.P., Burke, K., Ernzerhof, M. (1996) G eneralized Gr adient A pproximation Made S imple, Phys. Rev. Lett. 77, 3865–3868.

    Article  PubMed  CAS  Google Scholar 

  35. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.D., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C, Adamo, C, Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, 1., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C, Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., ai]Wong, M.W., Andres, J.L., Gonzalez, C, Head-Gordon, M., Replogle, E.S., and Pople, J.A. (2000) Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh PA, USA.

    Google Scholar 

  36. Foresman, J.B., Frish, A. (1995) Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA, USA.

    Google Scholar 

  37. Handy, N.C., Schaefer III, H.F. (1984) On the evaluation of analytic energy derivatives for correlated wave functions, J. Chem. Phys. 81, 5031–5033.

    Article  CAS  Google Scholar 

  38. Mcweeny R., Sutcliffe, B.T. (1969) Methods of Molecular Quantum Mechanics, Academic Press, London.

    Google Scholar 

  39. Wolinski, K., Hinton, J.F., Pulay, P. (1990) Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc. 112, 1164.

    Article  Google Scholar 

  40. Balevicius, M.L., Tamulis, A., Tamuliene, J. (2000) Role of Excited States on Cis-Trans Isomerization of Disperse Orange 3 Molecule, Lithuanian Journal of Physics 40, 387–393.

    CAS  Google Scholar 

  41. Balevicius, ML, Tamulis, A., Tamuliene, J. (2001) Influence of Various Substituents for Isomerization Processes of Azo-Dye, Lithuanian Journal of Physics 41,. p. 83–88.

    CAS  Google Scholar 

  42. Delsing, P., Likharev, K.K., Kuzmin, L.S., Claeson, T. (1989) Time-Correlated Single-Electron Tunneling in One-Dimensional Arrays of Ultrasmall Tunnel Junctions, Phys. Rev. Lett. 63, 1861–1864.

    Article  PubMed  Google Scholar 

  43. Delsing, P., Likharev, K.K., Kuzmin, L.S., Claeson, T. (1990) Time-Correlated Single-Electron Tunneling in One-Dimensional Arrays of Ultrasmall Tunnel Junctions, Phys. Rev. B 42, 7439–7449.

    Google Scholar 

  44. Williams, E.R., Ghosh, R.N., Martinis, J.M. (1992) Measuring the Electron’s Charge and the Fine-Structure Constant by Counting Electrons on a Capacitor, Journal of Research of the National Institute of Standards and Technology 97, 299–304.

    Article  Google Scholar 

  45. Pothier, H., Lafarge, P., Urbina, C, Esteve, D., Devoret, M.H. (1992) Single-Electron Pump Based on Charging Effects, Europhysics Letters 17, 249–254.

    Article  Google Scholar 

  46. Natansohn, A., Rochon, P., Meng, X., Barrett, C, Buffeteau, T., Bonenfant, S., Pezolet, M. (1998) Molecular Addressing Selective Photoinduced Cooperative Motion of Polar ester groups in copolymers containing Azobenzene groups, Macromolecules 31, 1155–1161.

    Article  CAS  Google Scholar 

  47. Cammi, R., Mennucci, B., Tomasi, J. (1999) Nuclear magnetic shieldings in solution: gauge invariant atomic orbital calculation using the polarizable continuum model, J. Chem. Phys. 110, 7627.

    Article  CAS  Google Scholar 

  48. Balevicius, V., Tamuliene, J., Hadzi, D. (2002), 1H, 13C and 170 NMR study of pyridine-N-oxide hydrogen bond complexes in liquid state, article in preparation.

    Google Scholar 

  49. Tamulis, A., Tamuliene, J., (2002) Quantum mechanical modeling of magnetical switch and quantum computing gate in complex: aza-fullerene pyridine-N-oxide hydrochloride, article in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tamulis, A., Tamuliene, J., Tamulis, V. (2003). Quantum Mechanical Design of Light Driven Molecular Logical Machines and Elements of Molecular Quantum Computers. In: Barsanti, L., Evangelista, V., Gualtieri, P., Passarelli, V., Vestri, S. (eds) Molecular Electronics: Bio-sensors and Bio-computers. NATO Science Series, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0141-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0141-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1212-9

  • Online ISBN: 978-94-010-0141-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics