Skip to main content

Aerobic Biodegradation of Polychlorinated Biphenyls (PCBs)

The fate, distribution, kinetics and enhancement of PCB biodegradation efficacy in the bacterial cell suspension of Pseudomonas stutzeri

  • Chapter
The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions

Part of the book series: NATO Science Series ((NAIV,volume 19))

Abstract

A large number of new organic chemicals are permanently being introduced in the environment. Among these, PCBs are persistent priority pollutants that have been used extensively in industrial applications. Based on the economical and environmental considerations, there is a growing interest in the use of the developing bioremediation technology to clean environmental sites that are contaminated with organic pollutants. Ideally, microorganisms convert organic substances into carbon dioxide and water with some salts as by-products containing chlorine or other halogens. However, the prerequisite of applying bioremediation technology in order to eliminate PCBs in contaminated soil or water is the development of microbial strains with enhanced biodegradation capabilities and/or adjustment to the environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sweet, G.H. (1992): Bioremediation: Myth us. realities. Environ. Protect., May, 1–4.

    Google Scholar 

  2. Dercová, K., Baláž, š., Haluška, L’., Horňák, V., and Holecová, V. (1995) Degradation of PCB by bacteria isolated from long-time contaminated soil, Int. J. Environ. Anal. Chem. 58, 337–348.

    Article  Google Scholar 

  3. Cvengroš, J., Filištein, V. (1999) Separation in a PCB-contaminated mineral oil system, Environ. Eng. Sci. 16, 15–20.

    Article  Google Scholar 

  4. Bennett, G.F., Olmstead, K.P. (1992) Microorganisms get to work, Chem. Brit. 2, 133–137.

    Google Scholar 

  5. Kohler, H.P.E., Kohler-Staub, D., and Focht, D.D. (1988) Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells, Appl. Environ. Microbiol. 54, 1940–1945.

    CAS  Google Scholar 

  6. Furukawa, K., Matsumura, F., and Tonomura, K. (1978) Alcaligenes and Acinetobacter strains capable of degrading polychlorinated biphenyls, Agric. Biol. Chem. 42, 543–548.

    Article  CAS  Google Scholar 

  7. Bedard, D.L., Wagner, R.E., Brennan, M.J., Haberl, M.L., and Brown, J.F.Jr. (1987) Extensive degradation of Aroclors and environmental transformed polychlorinated biphenyls by Alcaligenes eutrophus H850, Appl. Environ. Microbiol. 53, 1094–1102.

    CAS  Google Scholar 

  8. Sylvestre, M. and Fateux, J. (1982) New facultative anaerobe capable of growth on chlorobiphenyls, J. Gen. Appl. Microbiol. 28, 61–72.

    Article  CAS  Google Scholar 

  9. Massé, R., Messier, F., Péloquin, L., Layotte, C., and Sylvestre, M. (1984) Microbial degradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyls, Appl. Environ. Microbiol. 47, 947–951.

    Google Scholar 

  10. Bevinakatti, B.G. and Ninnekar, H.Z. (1992) Degradation of biphenyl by aMicrococcus species, Appl. Microbiol. Biotechnol. 38, 273–275.

    Article  CAS  Google Scholar 

  11. Bedard, D.L., Unterman, R., Bopp, L.H., Brennan, M.J., Haberl, M.L., and Johnson, C. (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls, Appl. Environ. Microbiol. 51, 761–765.

    CAS  Google Scholar 

  12. Ahmad, D., Sylvestre, M., Sondossi, M., and Massé, R. (1991a) Bioconversion of 2-hydroxy-6-oxo-6-(4’-chlorophenyl) hexa-2,4-dienoic acid, the meta-cleavage product of 4-chlorobiphenyl, J. Gen. Microbiol. 137, 1375–1385.

    CAS  Google Scholar 

  13. Ahmad, D., Sylvestre, M., and Sondossi, M. (199b) Subcloning of bph from Pseudomonas testosteroni B-356 in Pseudomonas putida and Escherichia coli: evidence for dehalogenation during initial attack on chlorobiphenyls, Appl. Environ. Microbiol. 57, 2880–2887.

    Google Scholar 

  14. Hayase, N., Taira, K., and Furukawa, K. (1990) Pseudomonas putida KF715 bphabcd Operon encoding biphenyl and polychlorinated biphenyl degradation-cloning, analysis, and expression in soil bacteria, J. Bactenol. 172, 1160–1164.

    CAS  Google Scholar 

  15. Taira, K., Hirose, J., Hayashida, S., and Furukawa, K. (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707, J. Biol. Chem. 267, 4844–4853.

    CAS  Google Scholar 

  16. Hofer, B., Eltis, L.D., Dowling, D.N., and Timmis, K.N. (1993) Engineering of alkyl-responsive and haloaromatic-responsive gene-expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas, Gene 130, 47–55.

    Article  CAS  Google Scholar 

  17. Kikuchi, Y., Nagata, Y., Hinata, M., Kimbara, K., Fukuda, M., Yano, K,, and Takagi, M. (1994) Identification of bphA4 gene encoding ferredoxin reductase involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102, J. Bacterial. 176, 1689–1694.

    CAS  Google Scholar 

  18. Sylvestre, M., Hurtubise, Y., Barriault, J., Bergeron, J., and Ahmad, D. (1996) Characterization of active recombinant 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase from Comamonas testosteroni B-356 and sequence of the encoding gene (bphB), Appl. Environ. Microbiol. 62, 2710–2715.

    CAS  Google Scholar 

  19. Sondossi, M., Sylvestre, M., Ahmad, D., and Massé, R. (1991) Metabolism of hydroxybiphenyl by biphenyl/chlorobiphenyl degrading Pseudomonas testosteroni, strain B-356, J. Ind. Microbiol. 7, 77–88.

    Article  CAS  Google Scholar 

  20. Asturias, J.A. and Timmis, K.N. (1993) Three different 2,3-dihydroxybiphenyl-l,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6, J. Bacteriol. 175, 4631–4640.

    CAS  Google Scholar 

  21. Bedard, D.L., Haberl, M.L. (1991) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains, Microb. Ecol. 20, 87–102.

    Article  Google Scholar 

  22. Gibson, D.T., Cruden, D.L., Haddock, J.D., Zylstra, G.J., and Brand, J.M. (1994) Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707, J. Bacteriol. 175, 4561–4564.

    Google Scholar 

  23. Bergeron, J., Ahmad, D., Barriault, D., Larose, A., Sylvestre, M., and Powlowski, J. (1994) Identification and mapping of the gene translation products involved in the first steps of the Comamonas testosteroni B-356 biphenyl and chlorobiphenyl biodegradation pathway, Can. J. Microbiol. 35, 329–336.

    Google Scholar 

  24. Hirose, J., Suyama, A., Hayshida, S., and Furukawa, K. (1994) Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenases, Gene 183, 27–33.

    Google Scholar 

  25. Seeger, M., Timmis, K.N., and Hofer, B. (1995) Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400, Appl. Environ. Microbiol. 61, 2654–2658.

    CAS  Google Scholar 

  26. Barriault, D. and Sylvestre, M. (1993) Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms, Can. J. Microbiol. 39, 594–602.

    Article  CAS  Google Scholar 

  27. Furukawa, K., Simon, J.R., and Chakrabarly, A.M. (1983) Common induction and regulation of biphenyl, xylene toluene, and salicylate catabolism in Pseudomonas paucimobilis, J. Bacteriol. 154, 1356–1362.

    CAS  Google Scholar 

  28. Sondossi, M., Sylvestre, M.M, and Ahmad, D. (1992) Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway, Appl. Environ. Microbiol. 58, 485–495.

    CAS  Google Scholar 

  29. Arensdorf, J.J. and Focht, D.D. (1994) Formation of chlorocatechol meta-cleavage products by a Pseudomonad during metabolism of monochlorobiphenyls, Appl. Environ. Microbiol. 60, 2884–2889.

    CAS  Google Scholar 

  30. Guilbeault, B., Sondossi, M., Ahmad, D., and Sylvestre, M. (1994) Factors affecting the enhancement of PCB degradative ability of soil microbial populations, Int. Biodeter. Biodegr. 33, 73–91.

    Article  CAS  Google Scholar 

  31. Neilson, A.H. (1996) An environmental perspective on the biodegradation of organochlorine xenobiotics, Int. Biodeter. Biodegr. 3–21.

    Google Scholar 

  32. Alexander, M. (1994) Biodegradation and Biodeterioration, Academic Press Ltd., San Diego.

    Google Scholar 

  33. Vrana, B., Dercová, K., Baláž, š., and ževčíková, A. (1996a) Effect of chlorobenzoates on the degradation of polychlorinated biphenyls (PCB) by Pseudomonas stutzeri, World J. Microb.Biotech. 12, 323–326.

    Article  Google Scholar 

  34. Furukawa, K. and Chakrabarty, A.M. (1982) Involvement of plasmids in total degradation of chlorinated biphenyls, Appl. Environ. Microbiol. 44, 619–626.

    CAS  Google Scholar 

  35. Adriaens, P., Kohler, H.P.E., Kohler-Staub, D., and Focht, D.D. (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4, 4’-dichlorobiphenyl, Appl. Environ. Microbiol. 55, 887–892.

    CAS  Google Scholar 

  36. Fava, F. and Marchetti, L. (1991) Degradation and mineralization of 3-chlorobiphenyl by mixed aerobic bacterial culture, Appl. Microbiol. Biotechnol. 36, 240–245.

    Article  CAS  Google Scholar 

  37. Havel, J., Reineke, W. (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads, FEMS Microbiol. Lett. 78, 163–170.

    CAS  Google Scholar 

  38. Fava, F., Di Gioia, D., Cinti, S., Marchetti, L., and Quattroni, G. (1994) Degradation and dechlorination of low chlorinated biphenyls by a three-membered bacterial co-culture, Appl. Microbiol. Biotedmol. 41, 117–123.

    Article  CAS  Google Scholar 

  39. Hiramoto, M., Ohtake, H., and Toda, K. (1989) A kinetic study on total degradation of 4-chlorobiphenyl by a 2-step culture of Arthrobacter and Pseudomonas strains, J. Ferment. Bioeng. 68, 68–70.

    Article  CAS  Google Scholar 

  40. Berg, G., Seech, A.G., Lee, H., and Trevors, J.T. (1990) Identification and characterization of a soil bacterium with extracellular emulsifying activity, J. Environ. Sci. Health 25, 753–764.

    Google Scholar 

  41. McElwee, C.G., Lee, H., and Trevors, J.T. (1990) Production of extracellular emulsifying agent by Pseudomonas aeruginosa UG1, J. Ind. Microbiol. 5, 25–31.

    Article  Google Scholar 

  42. Cooper, D.G., Liss, S.N., Longgay, R., and Zajic, J.E. (1981) Surface activity of Mycobacterium and Pseudomonas, J. Ferment. Teclmol. 59, 97–101.

    CAS  Google Scholar 

  43. Goldman, S., Shabrtai, Y., Rubinosits, C., and Rosenberg, E. (1987) Emulsan in Acinetobacter calcoaceticus RAG1 — distribution of cell-free and cell-associated cross-reacting material, Appl.. Environ. Microbiol. 44, 165–170.

    Google Scholar 

  44. Persson, A., and Molin, G. (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates, Appl. Microbiol. Biotechnol. 26, 439–442.

    Article  CAS  Google Scholar 

  45. Viney, I. and Bewley, R.J.F. (1990) Preliminary studies on the development of a microbiological treatment for polychlorinated biphenyls, Arch. Environ. Contain. Toxicol. 19, 789–796.

    Article  CAS  Google Scholar 

  46. Wright, M.A., Knowles, Ch.J., Stratford, J., Jackman, S.A., and Robinson, G.K. (1996) The dechlorination and degradation of Aroclor 1242, Int. Biodeter. Biodeg. 10, 61–67.

    Article  Google Scholar 

  47. Aronstein, B.N., Paterek, J.R., Kelley, R.L., and Rice, L.E. (1995) The effect of chemical pretreatment on the aerobic microbial degradation of PCB congeners in aqueous system, J. Ind. Microbiol. 15, 55–59.

    Article  CAS  Google Scholar 

  48. Baxter, R.M., Sutherland, D.A. (1984) Biochemical and photochemical processes in the degradation of chlorinated biphenyls, Environ. Sci. Technol. 18, 608–610.

    Article  CAS  Google Scholar 

  49. Fava, F. Baldoni, F., Marchetti, L., and Quattroni, G. (1996a) A bioreactor system for mineralization of low-chlorinated biphenyls, Process Biochem. 31, 659–667.

    Article  CAS  Google Scholar 

  50. Fava, F., Di Gioia, D., Marchetti, L., and Quattroni, G. (1996b) Aerobic dechlorination of lowchlorinated biphenyls by bacterial biofilms in packed bed batch bioreactors, Appl. Microbiol. Biotechnol. 45, 562–568.

    Article  CAS  Google Scholar 

  51. Vrana, B., Tandlich, R., Baláž, š., and Dcrcová, K. (1998) The aerobic biodegradation of polychlorinated biphenyls by bacteria, Biológia 53, 251–256.

    CAS  Google Scholar 

  52. Blasco, R., Mallavarapu, M., Wittich, R.M., Timmis, K.N., and Pieper, D.H. (1997) Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-comelabolizing microorganisms, Appl. Environ. Microbiol. 63, 427–434.

    CAS  Google Scholar 

  53. Hickey, W.J., Searles, D.B., and Focht, D.D. (1993) Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria, Appl. Environ. Microbiol. 59, 1194–1200.

    CAS  Google Scholar 

  54. Paya-Perez, A.B., Riaz, M., and Larsen, B.R. (1991) Soil sorption of 20 PCB congeners and six chlorobenzenes, Ecotox. Environ. Safe 21, 1–17.

    Article  CAS  Google Scholar 

  55. Haluška, L’., Barancfková, G., Baláž, š., Dercová, K., Vrana, B., Furčiová, E., Paz-Weisshaar, M., and Bielek, P. (1995) Degradation of PCB in different soils by inoculated Alcaligenes xylosoxidans, Sci. Total Environ. 175, 275–285.

    Article  Google Scholar 

  56. Goldstein, R.M., Mallory, L.M., and Alexander, M. (1985) Reasons for possible failure of inoculation to enhance biodegradation, Appl. Environ. Microbiol. 50, 977–983.

    CAS  Google Scholar 

  57. Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J., Flanagan, W.P., Stephens, M.L., Mondello, F.J, May, R.J., Lobos, J.H., Caroll, K.M., Brennan, M.J., Bracco, A.A., Fish, K.M., Warner, G.L., Wilson, P.R., Dietrich, D.K., Lin, D.T., Morgan, C.B., and Gately, W.L. (1993) In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259, 503–507.

    Article  CAS  Google Scholar 

  58. Vrana, B., Dercová, K., and Baláž, š. (1995) Monitoring evaporation polychlorinated biphenyls (PCB) in long-term degradation experiments, Biotechnol. Tech. 9, 333–338.

    Article  CAS  Google Scholar 

  59. Vrana, B., Dercová, K., and Baláž, š. (1996b) A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzen, Biotechnol. Tech. 10, 37–40.

    Article  CAS  Google Scholar 

  60. Dercová, K., Vrana, B., Baláž, š., and šándorová, A. (1996) Biodegradation and evaporation of polychlorinated biphenyls (PCBs) in liquid media, J. Ind. Microbiol. 16, 325–329.

    Article  Google Scholar 

  61. Dercová, K., Vrana, B., and Baláž, š. (1999a) A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzen, Chemosphere 38, 1391–1400.

    Article  Google Scholar 

  62. Vrana, B., Baláž, š., Tandlich, R., and Dercová, K. Environ. Toxicol. Client, (in press).

    Google Scholar 

  63. Dercová, K., Vrana, B., Tandlich, R., and šubová, L’. (1999b) Fenton’s type reaction and chemical pretreatment of PCBs, Chemosphere 39, 2621–2628.

    Article  Google Scholar 

  64. Hernandez, B.S., Koh, S.C., Chial, M., and Focht, D.D. (1997) Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil, Biodegradation 8, 153–158.

    Article  CAS  Google Scholar 

  65. Gilbert, E.S., Crowley, D.E. (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobactcr sp. strain BIB, Appl. Environ. Microbiol. 63 1933–1938.

    CAS  Google Scholar 

  66. Gilbert, E.S. and Crowley, D.E. (1998) Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil, Appl. Microbiol. Biotechnol. 50, 489–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dercová, K., Baláž, Š., Vrana, B., Tandlich, R. (2003). Aerobic Biodegradation of Polychlorinated Biphenyls (PCBs). In: Šašek, V., Glaser, J.A., Baveye, P. (eds) The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. NATO Science Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0131-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0131-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1142-9

  • Online ISBN: 978-94-010-0131-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics