Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 19))

Abstract

In this chapter, we address four state-of-the-art aspects of the Landfarming Framework. These include: (1) definition and design, (2) treatment rate, (3) example of full-scale landfarming for soil bioremediation, and (4) research and application issues. Landfarming is a technology based on the use of soil microorganisms and agricultural methods in an aerobic environment to reduce soil contamination and associated risk of public exposure through transformation, immobilization, and detoxication processes in order to protect public health and the environment. Landfarming technology accomplishes recycling of organic carbon and nutrients within the biosphere and maintains basic soil characteristics necessary to support plant growth (forestation, vegetation, etc.) and thus contributes to natural resource sustainability. The success of landfarming technology depends upon efficient utilization of microorganisms in a soil farm environment to treat soil contamination. Thus the development and availability of tools and methods for effective utilization of microorganisms within a landfarm environment is critical. An improved understanding of chemical—soil—microbe interactions that includes bioavailability, microorganism characterization, and effect of biological formation of soil bound residues on risk assessment and management will result in improved design, management, and monitoring of landfarm systems for sustainable restoration of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sims, R.C. and Sims, J.L. (1999) Landfarming of petroleum contaminated soils, in D.C. Adriano, J.-M. Bollag, W.T. Frankenberger, Jr., and Sims, R.C. (Eds.), Bioremediation of Contaminated Soils, Monograph 37, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, Chapter 27, pp. 767–782.

    Google Scholar 

  2. Sims, R.C., Sims, J.L., Sorensen, D.L., and McLean, J.E. (1996) Champion International Superfund Site, Libby, Montana: Bioremediation Field Performance Evaluation of the Prepared Bed Land Treatment System, Vol. I and II, EPA-600/R-95/156, U.S Environmental Protection Agency, Ada (OK).

    Google Scholar 

  3. Barth, D.S., Mason, B.J., Starks, T.H., and Brown, K.W. (1989) Soil Sampling Quality Assurance User’s Guide, Second Edition. EPA 600/8–89/046, Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Las Vegas, NV.

    Google Scholar 

  4. Mason, B.J. (1983) Preparation of Soil Sampling protocol: Techniques and Strategies. EPA-600/4-83/020. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Las Vegas, NV.

    Google Scholar 

  5. Sims, J.L., Sims, R.C., Sorensen, D.L., and Huling, S.G. (1999a) Prepared bed bioreactors, in D.C. Adriano, J.-M. Bollag, W.T. Frankenberger, Jr., and R.C. Sims (eds.) Bioremediation of Contaminated Soils, Monograph 37, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison (WI), Chapter 21, pp. 559–294.

    Google Scholar 

  6. Sims, R.C., Sims, J.L., Zollinger, R.L., and Huling, S.G. (1996) Bioremediation of soil contaminated with wood preservatives., in D.C. Adriano, J.-M. Bollag, W.T. Frankenberger, Jr., and R.C. Sims (eds.) Bioremediation of Contaminated Soils, Monograph 37, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, Chapter 25, pp. 719–742.

    Google Scholar 

  7. Huling, S.G., Pope, D.R., Matthews, J.E., Sims, J.L, Sims, R.C., and Sorensen, D.L. (1995) Land treatment and the toxicity response of soil contaminated with wood preserving waste, Remediation, Spring, 41–55.

    Google Scholar 

  8. Ginn, J.S., R.C. Sims, and I.P. Murarka. (1995a) Evaluation of biological treatability of soil contaminated with manufactured gas plant waste, Hazard. Waste Hazard. Mater. 12, 221–232.

    Article  CAS  Google Scholar 

  9. Park, K.S., Sims, R.C., Dupont, R.C., Doucette, W.J., and Matthews, J.E. (1990a) Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss, and biological activity, J. Environ. Toxicol. Chem. 9, 187–195.

    Article  CAS  Google Scholar 

  10. Park, K.S., Sims, R.C., and Dupont, R.C. (1990b) Transformation of PAHs in soil systems, J. Environ. Enginer. 116, 632–640.

    Article  CAS  Google Scholar 

  11. Aprill, W., Sims, R.C., Sims, J.L., and Matthews, J.E. (1990) Assessing detoxification and degradation of wood preserving and petroleum wastes in contaminated soils, Waste Manag. Res. 8, 45–65.

    CAS  Google Scholar 

  12. Sims, J.L., Sims, R.C., and Matthews, J.E. (1990) Approach to bioremediation of contaminated soil, Hazard. Waste Hazard. Mater. 72, 117–149.

    Article  Google Scholar 

  13. Symons, B.D., and Sims, R.C. (1988) Assessing detoxification of a complex hazardous waste using the Microtox Bioassay. Arch. Environ. Contam. Toxicol. 17, 497–505.

    Article  CAS  Google Scholar 

  14. Ginn, J.S., Doucette, W.J., Smith, D.P., Sorensen, D.L., and Sims R.C. (1996) Aerobic biotransformation of PAH and associated metabolites in soil, Polycycl. Aroin. Comp. 11, 43–55.

    Article  CAS  Google Scholar 

  15. Sims, R.C. and Overcash, M.R. (1983) Fate of polynuclear aromatic compounds (PNAs) in soilplant systems, Resid. Rev. 88, 1–68.

    Article  CAS  Google Scholar 

  16. Findlay, M., Fogel, S., Conway, L., and Taddeo, A. (1995) Field treatment of coal tar-contaminated soil based on results of laboratory treatability studies, in Microbial Transformation and Degradation of Toxic Organic Chemicals, Chapter 13, Wiley-Liss, New York (NY), pp. 487–513.

    Google Scholar 

  17. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., and Michalenko, E.M. (1991) Handbook of Environmental Degradation Rates, Lewis Publishers, Chelsea (MI).

    Google Scholar 

  18. Young, L.Y. and Cerniglia, C.E. (1995) Microbial Transformation and Degradation of Toxic Organic Chemcials, Wiley-Liss, New York, (NY).

    Google Scholar 

  19. Maliszewska-Kordybach, B. (1999) Persistent organic contaminants in the environment: PAHs as a case study, in Bioavailability of Organic Xenobiotics in the Environment, Springer Science+Business Media Dordrecht, the Netherlands, pp. 3–34.

    Google Scholar 

  20. Wild, S.R. and Jones, K.C. (1992) Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci. Total Environ. 119, 85–119.

    Article  CAS  Google Scholar 

  21. Nieman, J.K.C., Sims, R.C., Sims, J.L., Sorensen, D.L., McLean, J.E., and Rice, J.A. (1999a) [14C]-Pyrene bound residue evaluation using MIBK fractionation method for creosote-contaminated soil, Environ. Sci. Technol. 33, 776–781.

    Article  CAS  Google Scholar 

  22. Kwan, K.K. and Dutka, B.J. (1995) Comparative assessment of two solid-phase toxicity bioassays: the direct sediment toxicity testing procedure (DSTTP) and the Microtox™ Solid-Phase Test (SPT), Bull. Environ. Contam. Toxicol. 55, 338–346.

    Article  CAS  Google Scholar 

  23. Benton, M.J., Malot, M.L., Knight, S.S., Cooper, C.M., and Bensen, W.H. (1995) Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria, Environ. Toxicol. Chem. 14, 411–414.

    Article  CAS  Google Scholar 

  24. Ringwood, A.H., DeLorenzo, M.E., Ross, P.E., and Holland, A.F. (1997) Interpretation of Microtox™ Solid-Phase Toxicity Tests: the effects of sediment composition, Environ. Toxicol. Chem. 16, 135–1140.

    Article  Google Scholar 

  25. Lappalainen, J., Juvonen, R., Vaajasaari, J., and Karp, M. (1999) A new flash method for measuring the toxicity of solid and colored samples, Chemosphere 38, 1069–1083.

    Article  CAS  Google Scholar 

  26. Alexander, M. and Scow, K.M. (1989) Kinetics of biodégradation in soil, in B.L. Sawhney and K. Brown (eds.), Reactions and Movement of Organic Chemicals in Soils, SSSA Special Publication no. 22, Chapter 10, SSSA, Inc., ASA, Inc., Madison (WI), pp. 243–269.

    Google Scholar 

  27. Sims, R.C., Sorensen, D.L. Sims, J.L., McLean, J.E., Mahmood, R.H., Dupont, R.R., and Jurinak, J.J. (1986) Contaminated Surface Soils: In-Place Treatment Techniques, Noyes Publications, Park Ridge (NJ).

    Google Scholar 

  28. Cookson Jr., J.T. (1995) Bioremediation Engineering: Design and Application, McGraw-Hill, New York.

    Google Scholar 

  29. Burden, D.S. and Sims, J.L. (1999) Fundamentals of Soil Science as Applicable to Management of Hazardous Wastes, EPA/540/S-98/500. U.S. Environmental Protection Agency, Office of Research and Development, Washington (DC).

    Google Scholar 

  30. Sims, R.C. and Sims, J.L. (1995) Chemical mass balance approach to field-scale evaluation of bioremediation, Environ. Progr. 14, F 2–3.

    Article  Google Scholar 

  31. U.S. EPA (1986) Waste/Soil Treatability Studies on Four Complex Wastes, EPA/600/6–86/003a,b. U.S. Environmental Protection Agency, Robert S. Kerr Laboratory, Ada (OK).

    Google Scholar 

  32. Stevens, D.K., Yan, Z., Sims, R.C., and Grenney, W.J. (1989) Sensitive Parameter Evaluation for a Vadose Zone Fate and Transport Model, EPA/600/2–89/039, U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Ada (OK).

    Google Scholar 

  33. Baker, K.H. (1994) Bioremediation of surface and subsurface soils, in K.H. Baker and D.S. Herson (eds), Bioremediation, McGraw-Hill, New York, pp. 203–259.

    Google Scholar 

  34. Hurst, C.J., Sims, R.C., Sims, J.L, Sorensen, D.L., McLean, J.E., and Huling, S.J. (1996) Polycyclic aromatic hydrocarbon biodegradation as a function of oxygen tension in contaminated soil, J. Hazard. Mater. 51, 193–208.

    Article  CAS  Google Scholar 

  35. Hurst, C.J., Sims, R.C., Sims, J.L., Sorensen, D.L., Mclean, J.E., and Huling, S.G. (1997) Soil gas oxygen tension and pentachlorophenol biodegradation, J. Environ. Engineer. 123, 364–370.

    Article  CAS  Google Scholar 

  36. Park, H.S., Sims, R.C., Doucette, W.J., and Matthews, J.E. (1988) Biological transformation and detoxification of 7, 12-dimethylbenzanthracene in soil, J. Water Pollut. Contr. Feder. 60, 1822–1825.

    CAS  Google Scholar 

  37. Hinchee, R.E. (1994) Bioventing of petroleum Hhydrocarbons, in R.C. Norris and R.E. Hinchee (Eds), Handbook of Bioremediation, CRC Press, Boca Raton (FL) pp. 39–59.

    Google Scholar 

  38. Coover, M.P. and Sims, R.C. (1987) The effect of temperature in polycylic aromatic hydrocarbon presistence in an unacclimated agricultural soil, Hazard. Wastes Hazard. Mater. 4, 69–82.

    Article  CAS  Google Scholar 

  39. Cheng, H.H. and Mulla, D.J. (1999) The Soil Environment, in D.C. Adriano, J.-M. Bollag, W.T. Frankenberger, Jr., and R.C. Sims, (eds), Bioremediation of Contaminated Soils, ASA, Inc., CSSA, Inc., SSSA, Inc. Madison (WI), pp. 1–13.

    Google Scholar 

  40. Nieman, J.K., Sims, R.C., and Cosgriff, D.M. (1999b) Regulatory and management essues in prepared bed land treatment: Libby Groundwater Site, in R.E. Hinchee (Ed.), In Situ and On-Site Bioremediation,Vol. 5, Bioreactor and ex Situ Treatment Technologies, Battelle Press, Columbus (OH), pp. 97–102.

    Google Scholar 

  41. Nieman, J.K.C., Sims, R.C., McLean, J.E., Sims, J.L., and Sorensen, D.L. (2000a) Fate of pyrene in contaminated soil amended with alternate electron acceptors. Chemosphere 44, 1265–1271.

    Article  Google Scholar 

  42. Holman, H.Y., Nieman, J.K.C., Sorensen, D.L., Miller, C.D., Martin, M.C., Borch, T., McKiney, W.R., and Sims, R.C. (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies, Environ. Sci. Technol. 36, 1276–1280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sims, R.C., Sims, J.L. (2003). Landfarming Framework for Sustainable Soil Bioremediation. In: Šašek, V., Glaser, J.A., Baveye, P. (eds) The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. NATO Science Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0131-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0131-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1142-9

  • Online ISBN: 978-94-010-0131-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics