Skip to main content

Rapid Detection/Identification of Microbes, Bacterial Spores, Microbial Communities, and Metabolic Activities in Environmental Matrices

  • Chapter
The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions

Part of the book series: NATO Science Series ((NAIV,volume 19))

  • 617 Accesses

Abstract

Modern molecular methods such as lipid biomarker analysis (LBA) and PCRDenaturing Gradient Gel Electrophoresis (DGGE) of rDNA or functional genes have enabled sensitive and quantitative assessment of in situ microbial communities that is independent of isolation and culture of the microbes. Application of artificial neural network analysis (ANN) to biomarker data has demonstrated a powerful means to characterize soil, marine and deep subsurface microbial communities. This analysis has provided accurate detection of bioavailability, bioremediation effectiveness, and rational end points for remediation based on the community microbial ecology. Sequential high pressure/temperature extraction greatly shortens sample-processing time and increases the recovery of lipid biomass from soils. Sequential extraction by supercritical CO2 and/or accelerated solvent extraction (ACE) lyses cells and allows sequential recovery of neutral lipids, then polar lipids, and facilitates recovery of DNA. The extracted residue is then derivatized in situ and re-extracted with supercritical CO2 or hexane with ACE to yield dipicolinic acid originating from bacterial spores and ester-linked hydroxy fatty acids derived from the lipopolysaccharide of Gram-negative bacteria. Once extracted, components in each fraction are separated by capillary high performance liquid chromatography (HPLC) with solvent systems compatible with electrospray ionization and analyzed by tandem quadrupole mass spectrometry (HPLC/ESI/MS/MS) and capillary gas chromatography/mass spectrometry (GC/MS). HPLC utilizing electrospray ionization (ESI) provides the potential to analyze intact lipid biomarkers and provides greater insights into the viable biomass, community composition and physiological status than with previous techniques. Use of HPLC/ESI/MS/MS enables analysis of respiratory quinones, diacylglycerols, and sterols from the neutral lipids. Also, the structures of intact phospholipids that have been collisionally dissociated can be determined at sensitivities (for synthetic molecules) of ≈ 90 attomol/μL (concentration of total lipids in a single E. coli) Moreover HPLC/ESI/MS/MS also enables analysis/detection of the isoprenoid tetraethers of the Archaea, Ornithine lipids of Gram-negative bacteria signaling for bio-available phosphate, and the lysyl esters of phosphatidyl glycerol of Gram-positive bacteria. This expanded LBA not only facilitates recovery of DNA for highly specific PCR amplification but provides deeper insight into predicting in situ metabolic activities without disturbance artifacts. In addition, the analysis is based on the responses to microniche environments—the Holy Grail of microbial ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White, D.C., Davis, W.M, Nickels, J.S., King, J.D. and Bobbie, R.J. (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51–62.

    Article  Google Scholar 

  2. Balkwill, D.L., Leach, F.R., Wilson, J.T., McNabb, J.F. and White, D.C. (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface sediments. Microbial Ecology 16, 73–84.

    Article  CAS  Google Scholar 

  3. White, D.C., Stair, J.O. and Ringelberg, D.B. (1996) Quantitative Comparisons of in situ Microbial Biodiversity by Signature Biomarker Analysis. J. Indust. Microbiol. 17, 185–196.

    Article  CAS  Google Scholar 

  4. Dowling, N.J.E., Widdel, F. and White, D.C. (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria. J. Gen. Microbiol. 132,1815–1825.

    Google Scholar 

  5. Edlund, A., Nichols, P.D., Roffey, R. and White, D.C. (1985) Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res. 26, 982–988.

    CAS  Google Scholar 

  6. Welch, D.F. 1991. Applications of cellular fatty acid analysis. Clinical Microbiology Reviews 4 422–438.

    CAS  Google Scholar 

  7. Guckert, J.B., Ringelberg, D B., White, D C., Henson, R.S. and Bratina, B.J. (1991).Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the proteobacteria. J. Gen. Microbiol. 137, 2631–2641.

    CAS  Google Scholar 

  8. Kohring, L.L., Ringelberg, D.B., Devereux, R., Stahl, D.A., Mittelman, M.W. and White, D.C. (1994) Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfáte-reducing bacteria. FEMS Microbiol. Letters. 119, 303–308.

    Article  CAS  Google Scholar 

  9. White, D.C., Ringelberg, D.B., Guckert, J.B. and Phelps, T. J. (1991).. Biochemical markers for in situ microbial community structure, in: Fliermans, C.B. and Hazen, T.C. (Eds.), Proceedings of the First International Symposium on Microbiology of the Deep Subsurface. WSRC Information Services, Aiken, SC. pp. 4–45 to 4-56.

    Google Scholar 

  10. Canuel, E.A., Cloen, J.E., Ringelberg, D.B., Guckert, J.B.and Rau G.H. (1995) Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol Oceanogr. 40, 67–81.

    Article  CAS  Google Scholar 

  11. Parker, J.H., Smith, G.A., Fredrickson, H.L., Vestal, J.R. and White, D.C. (1982) Sensitive assay, based on hydroxy-fatty acids from lipopolysaccharide lipid A for gram negative bacteria in sediments. Appl. Environ. Microbiol. 44, 1170–1177.

    CAS  Google Scholar 

  12. White, D.C., Ringelberg, D.B. and Macnaughton S.J. (1997) Review of PHA and signature lipid biomarker analysis for quantitative assessment of in situ environmental microbial ecology. In (Eggink, G., Steinbuchel, A., Poirer, Y. and Witholt, B eds.) 1996 International Symposium on Bacterial Polyhydroxylalkanoates, NRC Research Press, Ottawa, Canada, pp. 161–170

    Google Scholar 

  13. Gehron, M.J. and White, D.C. (1982) Quantitative determination of the nutritional status of detrital microbiota and the grazing fauna by triglyceride glycerol analysis. J. Exp. Mar. Biol. 64, 145–158.

    Article  CAS  Google Scholar 

  14. Guckert, J.B., Hood, M.A. and White, D.C. (1986) Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52, 794–801.

    CAS  Google Scholar 

  15. White, D.C. (1995) Chemical ecology: Possible linkage between macro-and microbial ecology. Oikos 74, 174–181.

    Article  Google Scholar 

  16. Ward, D.M., Bateson, M.M., Weller, R. and Ruff-Roberts, A.L. (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microbial Ecology 12, 219–286.

    Article  CAS  Google Scholar 

  17. Kehrmeyer, S.R., Appelgate, B.M., Pinkert, H C., Hedrick, D.B., White, D.C. and Sayler, G.S. (1996) Combined lipid/DNA extraction method for environmental samples. J. Microbiol. Methods 25, 153–163.

    Article  CAS  Google Scholar 

  18. Stephen, J.R., Chang, Y-J., Gan, Y.D., Peacock, A., Pfiffner, S.M, Barcelona, M. J, White D.C., and Macnaughton S.J. (1999) Microbial Characterization of JP-4 fuel contaminated-site using a combined lipid biomarker/PCR-DGGE based approach. Environmental Microbiology. 1, 231–241.

    Article  CAS  Google Scholar 

  19. White, D.C., Macnaughton, S.J., Stephen, J.R., Almeida, J.A., Chang, Y-J., Gan, Y-D and Peacock A.. (2000) The in-situ assessment of microbial community ecology within samples from Chromium and Uranium contaminated Sites. DOE-NABIR workshop Abstracts. Reston, VA January 31-February 2, Pp. 32

    Google Scholar 

  20. Macnaughton, S. J., Marsh, T. L., Stephen, J. R., Long, D., Gan, Y-D., Chang, Y-J., Almeida, J. A., and White, D.C. (1999) Lipid biomarker analysis of bacterial and eukaryote communities of chromium contaminated soils. Abst. Am Soc. Microbiol. 1999

    Google Scholar 

  21. Macnaughton, S.J. (2000) Community dynamics presentation, NABIR workshop Abstracts. Reston, VA January 31-February 2, Pp. 3.

    Google Scholar 

  22. Brockman,_F., Kieft, T. and Balkwill, D.. (2000) Vadose zone microbial community structure and activity in metal/radionuclide-contaminated Sediments. NABIR workshop Abstracts. Reston, VA January 31-February 2, Pp. 25.

    Google Scholar 

  23. Ringelberg, D.B., Davis, J.D., Smith, G.A., Pfiffner, S.M., Nichols, P.D., Nickels, J. B., Hensen, J.M., Wilson, J.T., Yates, M., Kampbell, D.H., Reed, H.W., Stocksdale, T.T and White D.C. (1988) Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiol. Ecology 62, 39–50.

    Google Scholar 

  24. Macnaughton, S.J., Jenkins, T.L., Wimpee, M.H., Cormier, M.R. and White, D.C. (1997) Rapid extraction of lipid biomarkers from pure culture and environmental samples using pressurized accelerated hot solvent extraction. J. Microbial Methods 31, 19–27.

    Article  CAS  Google Scholar 

  25. Geyer, R., Bittkau, A., Gan, Y-D., White, D.C., and Schlosser, D. 2002. Advantages of lipid biomarkers in the assessment of environmental microbial communities in contaminated aquifers and surface waters. Proceed. Third International Conference on Wate Resources and Environmental Research (ICWRER) Dresden Germany.

    Google Scholar 

  26. Nivens, D.E., and Applegate, B.M. (1997) Apparatus and methods for nucleic acid isolation using supercritical fluids. U. S. Patent # 5922536 issued July 13, 1999.

    Google Scholar 

  27. Cody, R. B., J.A. Laramar, G.L. Samuelson, E.G. Owen 2002. Application of the JEOL tunable-Enengy electron monochromoter: Bacterial spores, BTX and Biowepons. 50th ASMS Conference Proceedings poster 298, TPX, Orlando FL.

    Google Scholar 

  28. Hedrick, D.B., and White, D.C. (1986) Microbial respiratory quinones in the environment I. A sensitive liquid Chromatographic method. J. Microbiol. Methods 5, 243–254.

    Article  CAS  Google Scholar 

  29. Hollander, R., Wolf, G. and Mannheim, W. (1977). Lipoquinones of some bacteria and mycoplasmas, with considerations of their functional significance. Antonie van Leeuwenhoek 43, 177–185.

    Article  CAS  Google Scholar 

  30. Collins, M.D., and Jones, D. (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45: 316–354.

    CAS  Google Scholar 

  31. Lytle, C.A., G.J. Van Berkel, and D.C. White (2001) Comparison of Atmospheric Pressure Photoionization and Atmospheric Pressure Chemical Ionization for the Analysis of Ubiquinones and Menaquinones, 49th American Society for Mass Spectrometry Meeting Proceedings Chicago, IL., TPC 074, May 27-31

    Google Scholar 

  32. Lytle, C.A., Y-D. M. Gan, K. Salone, and DC. White (2001) Sensitive Characterization of Microbial Ubiquinones from Biofilms by Electrospray/Mass Spectrometry Environ. Microbiol. 3 (4): 265–272.

    CAS  Google Scholar 

  33. Ringelberg, D.B., Sutton, S. and White, D.C. (1997) Biomass bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked fatty acids. FEMS Microbiology Reviews 20, 371–377.

    Article  CAS  Google Scholar 

  34. Van Berkel, G.J., Quirke, J.M., Tigani, R.A. and Dilley, A.S. (1998) Derivatization for electrospray ionization mass spectrometry. 3. Electrochemically ionizable derivatives. Ann. Chem. 70: 1544–1584.

    Article  Google Scholar 

  35. Quirke, J.M.E., Adams, C.L. and Van Berkel, G.J. (1994) Chemical derivatization for electrosprayionization mass spectrometry. 1. alkyl-halides, alcohols, phenols, thiols, and amines. Ann. Chem. 66, 1302–1315.

    Article  CAS  Google Scholar 

  36. Christie, W.W. (1996) Separation of phospholipid classes by high-performance liquid Chromatography, in (Christie, W.W., Ed.), Advances in Lipid Methodology. The Oily Press, Dundee, Scotland, Vol. 3 Pp. 77–107.

    Google Scholar 

  37. Lytle, C.A, Gan, Y-D. and White, D.C. (2000) Electrospray Ionization Compatible Reversed Phase Separation of Phospholipids: Incorporating Piperidine As A Post Column Modifier for Negative Ion Detection by Mass Spectrometry. J. Microbiol. Methods 41: 227–234.

    Article  CAS  Google Scholar 

  38. Sadusky. M.C. and Datta, S.K. DE. (1991) Chemistry of P transformations in soil. Adv. In Soil Sci. 16: 1–120.

    Article  Google Scholar 

  39. Condon, L.M., Tissen, H., Trasar-Cepeda, C., Noir, J. and Stewart, J.W.B. (1993) Effects of liming on organic matter decomposition and phosphorous extractability in an acid humic ranker soil from northwest Spain. Biology and Fertility of Soils 15, 279–284.

    Article  Google Scholar 

  40. Zhang, Y.S., Werner, W., Scherer, H.W. and Sun, X.. (1994) Effect of organic manure on organic phosphorous fractions in two paddy soils. Biology and Fertiltity of Soils 17, 64–68.

    Article  CAS  Google Scholar 

  41. Frossard, E., Lopez-Hernandez, D. and Brassard, N. (1996) Can isotopic exchange kinetics give valuable information on the rate of mineralization of organic phosphorous in soils? Soil Biol. Biochem. 28, 857–864.

    Article  CAS  Google Scholar 

  42. Minnikin, D.E. and Abdolrahimzadeh, H. (1974) The replacement of phosphatidylethanlolamine and acidic phospholipids by ornithine-amid lipid and a minor phosphorus-free lipid in Pseudomonas fluorescence NCMB129. FEMS Letters 43, 257–260.

    CAS  Google Scholar 

  43. Lennarz, W.J. (1970) Bacterial Iipids. In Wakil, S. (ed) Lipid Metabolism. Academic Press, New York, NY, pp. 155–183.

    Chapter  Google Scholar 

  44. Kates, M. (1993) Membrane Lipids of archea. IN The biochemistry of Archea (Archaebacteria), M. Kates, D. J. Kushner, and A. T. Matheson (eds), Chapter 9, 261–296, Elsevvier, New York.NY.

    Chapter  Google Scholar 

  45. Hopmans, E.C., S. Schouten, R.D Pancost, M.T.J. van der Meer, and J.S. Sinnlughe Damste. (2000) Analysis of intact tetraether lipids in archeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass soectrometry. Rapid Comm. Mass Spectrometry 14: 585–589.

    Article  CAS  Google Scholar 

  46. Findlay, R.H., and White, D.C. (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl. Environ. Microbiol. 45, 71–78.

    CAS  Google Scholar 

  47. Tunlid, A., Baird, B.H., Trexler, M.B., Olsson, S., Findlay, R.H., Odham, G. and White, D.C. (1985). Determination of phospholipid ester-linked fatty acids and poly beta hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.). Canad. J. Microbiol. 31, 1113–1119.

    Article  CAS  Google Scholar 

  48. Fang, J. and Barcelona, M.J. (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J. Microbiol. Methods 33, 23–35.

    Article  CAS  Google Scholar 

  49. Smith, P.B.W., Snyder, A.P. and Harden, C.S. (1995) Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal. Chem. 67, 1824–1830.

    Article  CAS  Google Scholar 

  50. Le Quere, J.L. 1993. Tandem mass spectrometry in the structural analysis of lipids, in Christie, W.W (Ed.), Advances in Lipid Methodology. The Oily Press, Dundee, Scotland, Vol 2 pp. 215–245.

    Google Scholar 

  51. Cole, M.J. (1990) Application of triple quadrupole mass spectrometry to the direct determination of microbial biomarkers and the rapid detection and identification of microorganisms. PhD Dissertation, Department of Chemistry, Michigan State University, E. Lansing, MI.

    Google Scholar 

  52. Lane, J.R. W.R. Mayberry, and D.C. White. 2002. A method for the sequential fractionation and derivatization of fatty acids, aldehydes and long-chain bases from diester lipids, plasmalogens and sphingolipids in lipid extracts. in review.

    Google Scholar 

  53. Findlay, R.H., Trexler, M.B., Guckert, J.B. and White, D.C. (1990) Laboratory study of disturbance in marine sediments: response of a microbial community. Marine Ecological Progress Series 61,: 121–133.

    Article  Google Scholar 

  54. Findlay, R.H., Trexler, M.B. and White, D.C. (1990). Response of a benthic microbial community to biotic disturbance. Marine Ecology Progress Series. 61, 135–148.

    Article  Google Scholar 

  55. Guckert, J.B., Nold, S.C., Boston, H.L. and White, D.C. (1991). Periphyton response along an industrial effluent gradient: Lipid-based physiological stress analysis and pattern recognition of microbial community structure. Canad, J. Fish. Aqual Sci. 49, 2579–2587.

    Article  Google Scholar 

  56. Napolitano, G.E., Hill, W.R., Stewart, J.B., Nold, S.C. and White, D.C. (1993) Changes in periphyton fatty acid composition in chlorine-polluted streams. J. N. Amer. Benthol. Soc. 13, 237–249.

    Article  Google Scholar 

  57. Angell, P., Arrage, A., Mittelman, M.W and White, D.C. (1993) On-line, non-destructive biomass determination of bacterial biofilms by fluorometry. J. Microbiol. Methods 18, 317–327.

    Article  CAS  Google Scholar 

  58. Arrage A. A., Vasishtha, N., Sunberg, D., Baush, G., Vincent, H.L. and White, D. C (1995) On-line monitoring of biofilm biomass and activity on antifouling and fouling-release surface using bioluminescence and fluorescence measurements during laminar-flow. J. Indust. Microbiol. 15, 277–282.

    Article  CAS  Google Scholar 

  59. White, D.C, Flemming, C.A., Leung, K.T. and Macnaughton, S.J. (1998) In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface and in biofilms. J. Microbiol. Methods 32, 93–105.

    Article  CAS  Google Scholar 

  60. Macnaughton, S.J., Stephens, J.R., Venosa., A.D.,. Davis, G.A, Chang, Y-J. and White, D. C. (1999). Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Micobiol. 65, 3566–3574.

    CAS  Google Scholar 

  61. Smith, G.A., J.S. Nickels, W.M. Davis, R.F. Martz, R.H. Findlay, and D.C. White. (1982) Perturbations of the biomass, metabolic activity, and community structure of the estuarine detrital microbiota: resource partitioning by amphipod grazing. J. Exp. Mar. Biol. Ecol. 64: 125–143.

    Article  Google Scholar 

  62. Morrison, S.J., and D.C. White (1980) Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus. Appl. Environ. Microbiol. 40: 659–671.

    CAS  Google Scholar 

  63. Nichols, P.D., and White, D.C. (1989) Accumulation of poly-beta-hydroxybutyrate in a methane-enriched halogenated hydrocarbon-degrading soil column: implications for microbial community structure and nutritional status. Hydrobiologia 176/177 369–377.

    Article  Google Scholar 

  64. Kieft, T. L. E. Wilch, K. OéConnor, D. B. Ringelberg, and D. C. White. 1997. Survival and phospholipid fatty aid profiles of surface and subsurface bacteria in natural microcosms. Appl. Env. Microbiol. 63: 1531–1542.

    CAS  Google Scholar 

  65. Smith, C.A, Phiefer, C.B., Macnaughton, S. J., Peacock, A., Burkhalter, R.S., Kirkegaard, R. and White, D.C. (1999) Quantitative lipid biomarker detection of unculturable microbes and chlorine exposure in water distribution system biofilms. Water Res. 34: 2683–2688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

White, D.C., Peacock, A.M., Geyer, R., Chang, YJ., Gan, YD.M., Lytle, C.A. (2003). Rapid Detection/Identification of Microbes, Bacterial Spores, Microbial Communities, and Metabolic Activities in Environmental Matrices. In: Šašek, V., Glaser, J.A., Baveye, P. (eds) The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. NATO Science Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0131-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0131-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1142-9

  • Online ISBN: 978-94-010-0131-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics