Skip to main content

Application of Room-Temperature Ionic Liquids to the Chemical Processing of Biomass-Derived Feedstocks

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

The use of lignocellulosic biomass as a renewable feedstock for the production of chemicals requires the development of new chemical processing technologies. Since many traditional solvents and catalyst systems are incompatible with carbohydrates and lignins, we are exploring the use of new solvent systems that can sustain catalytic reactions. More specifically, we are studying the use of ionic solvents that are liquid at room temperature, and that are known to have unique solvent properties. In order better to understand the fundamental chemistry of processing lignocellulosic biomass using ionic solvent systems, we are exploring chemical reactions with simple carbohydrate and lignin building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armor, J.N. (1999) Striving for catalytically green processes in the 21π century, Appl. Catal. A 189, 153–162.

    Article  CAS  Google Scholar 

  2. Bozell, J.J., Hames, R.H., and Dimmel, D.R. (1995) Cobalt-Schiff Base Complex Catalyzed Oxidation of Para-Substituted Phenolics. Preparation of Benzoquinones, J. Org. Chem. 60, 2398–2404.

    Article  CAS  Google Scholar 

  3. Collins, P.M. and Ferner, RJ. (1995) Monosaccharides-Their Chemistry and Their Roles in Natural Products, John Wiley & Sons, New York.

    Google Scholar 

  4. Anastas, P.T., Bartlett, L.B., Kirchhoff, M.M., and Williamson T.C. (2000) The role of catalysis in the design, development, and implementation of green chemistry, Catal. Today 55, 11–22.

    Article  CAS  Google Scholar 

  5. Welton, T. (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev. 99, 2071–2083.

    Article  CAS  Google Scholar 

  6. Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., and Rogers, R.D. (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction, Chem. Commun. 1765–1766.

    Google Scholar 

  7. Ilankumaran, P. and Verkade, J.G. (1999) Highly Selective Acylation of Alcohols Using Enol Esters Catalyzed by Iminophosphoranes, J. Org. Chem. 64, 9063–9066.

    Article  CAS  Google Scholar 

  8. Bredenkamp, M.W. and Spies, H.S.C. (2000) Tin-Mediated Equilibration of the Benzoate Esters of Methyl 4,6-O-Benzylidene-D-D-Glucopyranoside, Tetrahedron Lett. 41, 543.

    Article  CAS  Google Scholar 

  9. Barrett, A.G.M. and Braddock, D.C. (1997) Scandium(III) or lanthanide(III) triflates as recyclable catalysts for the direct acetylation of alcohols with acetic acid, Chem. Commun. 351–352.

    Google Scholar 

  10. Sakamoto, K., Hamada, Y., Akashi, H., Orita, A., and Otera, J. (1999) Novel Dimeric Organotin Cations: Highly Effetive Alcohol Acetylation Catalysts, Organometallics 18, 3555–3557.

    Article  CAS  Google Scholar 

  11. Jyojima, T., Miyamoto, N., Ogawa, Y., Matsumura, S., and Toshima, K. (1999) Novel Stereocontrolled Glycosidations of Olivoses Using Montmorillonite K-10 as an Environmentally Benign Catalyst, Tetrahedron Lett. 40, 5023–5026.

    Article  CAS  Google Scholar 

  12. Saravanan, P. and Singh, V.K. (1999) An Efficient Method for Acylation Reactions, Tetrahedron Lett. 40, 2611–2614.

    Article  CAS  Google Scholar 

  13. Schlotterbeck, A., Lang, S., Wray, V., and Wagner, F. (1993) Lipase-catalyzed monoacylation of fructose, Biotechnol. Lett. 15, 61–64.

    Article  CAS  Google Scholar 

  14. Steverick-de Zoete, M.C., Kneepkens, M.F.M., de Waard, P., Woudenberg-van Oosterom, M., Gotlieb, K.F., and Slaghek, T.M. (1999) Enzymatic synthesis and NMR studies of acylated sucrose acetates, Green Chem. June, 153–156.

    Google Scholar 

  15. Ward, O.P., Fang, J., and Li, Z. (1997) Lipase-catalyzed synthesis of a sugar ester containing arachidonic acid, Enzym. Microb. Technol. 20, 52–56.

    Article  CAS  Google Scholar 

  16. Choudary, B.M., Kantam, M.L., Neeraja, V., Bandyopadhyay, T., and Reddy, P.N. (1999) Vanadyl(IV) acetate, a reusable catalyst for acetylation of alcohols, J. Mol. Cat. A: Chem. 140, 25–29.

    Article  CAS  Google Scholar 

  17. Pasquali, M., Marchetti, F., and Floriani, C. (1979) Deoxygenation of Oxovanadium(IV) Complexes: A Novel Synthetic Route to Dichlorovanadium(IV) Chelate Complexes, Inorg. Chem. 18, 2401–2404.

    Article  CAS  Google Scholar 

  18. Schmidt, H. and Render, D. (1998) The preparation and synthetic potential of chlorovanadhim(V and IV) complexes supported by enamines and bis(enamines), Inorg. Chim. Acta 267, 229–238.

    Article  CAS  Google Scholar 

  19. Monteiro, A.L., Zinn, F.K., de Souza, R.F., and Dupont, J. (1997) Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-buty1-3-methylimidazolium tetrafluoroborate molten salt, Tetrahedron: Asymm. 8, 177–179.

    Article  CAS  Google Scholar 

  20. Collet, A. (1987) Cyclotriveratrylenes and cryptophanes, Tetrahedron 43, 5725–5759.

    Article  CAS  Google Scholar 

  21. Al-Farhan, E., Keehn, P.M., and Stevenson, R. (1992) Cyclo-oligomerization of Veratryl Alcohol with Trifluoroacetic Acid, Tetrahedron Lett. 33, 3591–3594.

    Article  CAS  Google Scholar 

  22. Jimenez, F.G., Perezamador, M.C., and Alcayde, J.R. (1969) Ring B conformation in 9,10-dihydroanthracenes by nuclear magnetic resonance, Can. J. Chem. 47, 4489–4491.

    Article  Google Scholar 

  23. Konishi, H., Sakakibara, H., Kobayashi, K., and Morikawa, O. (1999) Synthesis of the parent resorcin[4]arene, J. Chem. Soc., Perkin Trans. 1, 2583–2584.

    Article  Google Scholar 

  24. Cruz-Almanza, R., Shiba-Matzumoto, I., Fuentes, A., Martinez, M., Cabrera, A., Cardenas, J. and Salmon, M. (1997) Oligomerization of benzylic alcohols and its mechanism, J. Mol. Cat. A: Chem. 126, 161–168.

    Article  CAS  Google Scholar 

  25. Falana, O.M., Al-Farhan, E., Keehn, P.M., and Stevenson, R. (1994) High Yield Synthesis of the Parent C-Unsubstituted Calix[4]resorcinarene Octamethyl Ether, Tetrahedron Lett. 35, 65–68.

    Article  CAS  Google Scholar 

  26. Banks, R.E., François, P.-Y., and Preston, P.N. (1992) Polymerization of benzyl alcohol in anhydrous hydrogen fluoride: and efficient synthesis of poly(phenylenemethylene), Polymer 33, 3974–3975.

    Article  CAS  Google Scholar 

  27. Percec, V., Cho, C.G., and Pugh, C. (1991) Cyclotrimerization versus Cyclotertramerization in the Electrophilic Oligomerization of 3,4-Bis(methyloxy)benzyl Derivatives, Macromolecules 24, 3227–3234.

    Article  CAS  Google Scholar 

  28. Carmichael, A.J., Earle, M.J., Holbrey, J.D., McCormac, P.B., and Seddon, K.R. (1999) The Heck Reaction in Ionic Liquids: A Multiphasic Catalyst System, Org. Lett. 1, 997–1000.

    Article  CAS  Google Scholar 

  29. Ellis, B., Keim, W., and Wasserscheid, P. (1999) Linear dimerisation of but-1-ene in biphasic mode using buffered cbloroaluminate ionic liquid solvents, Chem. Commun. 337–338.

    Google Scholar 

  30. Keim, W., Vogt, D., Waffenschmidt, H., and Wasserscheid, P. (1999) New Method to Recycle Homogeneous Catalysts from Monophasic Reaction Mixtures by Using an Ionic Liquid Exemplified for the Rh-Catalysed Hydroformylation of Methy1-3-pentenoate, J. Cat. 186, 481–484.

    Article  CAS  Google Scholar 

  31. Zim, D., de Souza, R.F., Dupont, J., and Monteiro, A.L. (1998) Regioselective Synthesis of 2-Arylpropionic Esters by Palladium-Catalyzed Hydroesterification of Styrene Derivatives in Molten Salt Media, Tetrahedron Lett. 39, 7071–7074.

    Article  CAS  Google Scholar 

  32. Simon, L.C., Dupont, J., de Souza, R.F. (1998) Two-phase n-butenes dimerization by nickel complexes in molten salt media, Appl. Cat. A 175, 215–220.

    Article  CAS  Google Scholar 

  33. Chauvin, Y., Olivier, H., Wyrvalski, C.N., Simon, L.C., and de Souza, R. F. (1997) Oligomerization of n-Butenes Catalyzed by Nickel Complexes Dissolved in Organochloroaluminate Ionic Liquids, J. Catal. 165, 275–278.

    Article  CAS  Google Scholar 

  34. Suarez, P.A.Z., Dullius, J.E.L., Einloft, S., de Souza, R.F., Dupont, J. (1997) Two-phase catalytic hydrogenation of olefins by Ru(II) and Co(II) complexes dissolved in 1-n-buty1-3-methylimidazolium tetrafluoroborate ionic liquid, Inorg. Chim. Acta 255, 207–209.

    Article  CAS  Google Scholar 

  35. Einloft, S., Dietrich, F.K., de Souza, R.F, and Dupont, J. (1996) Selective two-phase catalytic ethylene dimerization by Ni(II) complexes/AlEtCl2 dissolved in organoaluminate ionic liquids, Polyhedron 15, 3257–3259.

    Article  CAS  Google Scholar 

  36. Suarez, P.A.Z., Dullius, J.E.L., Einloft, S., de Souza, R.F., and Dupont, J. (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes, Polyhedron 15, 1217–1219.

    Article  CAS  Google Scholar 

  37. Chauvin, Y., Einloft, S., and Olivier, H. (1995) Catalytic Dimerization of Propene by Nickel-Phosphine Complexes in 1-Buty1-3-methylimidazolium Chloride/AlEtxCl3-x (x=0,1) Ionic Liquids, Ind. Eng. Chem. Res. 34, 1149–1155.

    Article  CAS  Google Scholar 

  38. Sheldon, R.A., Arends, I.W.C.E., and Lempers, H.E.B. (1998) Liquid phase oxidation at metal ions and complexes in constrained environments, Catal. Today 41, 387–407.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moens, L., Khan, N. (2003). Application of Room-Temperature Ionic Liquids to the Chemical Processing of Biomass-Derived Feedstocks. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics