Applications of Ionic Liquids to Biphasic Catalysis

  • H. Olivier-Bourbigou
  • F. Hugues
Part of the NATO Science Series book series (NAII, volume 92)


Homogeneous catalysis offers many advantages that mainly originate from the structure of the catalyst. For example, most of the time, it is possible to control the steric and electronic properties of the active species by tuning the main central atom and ligands. Therefore, high activities and selectivities (regio-, chemio-, enantio-) can be expected. From an industrial point of view, the easy mixing and reaction heat removal ensure good temperature control and avoid any diffusion problem. Reaction section is simple and low investment costs are required for mild reaction conditions. Operations are flexible. Catalyst rate can be adjusted to reaction feed rate, taking into account the presence of feed impurities, to maintain the conversion and the selectivity. However, while the solubility of the catalyst constitutes a major advantage in terms of catalyst site availability, it also constitutes a major drawback in terms of catalyst separation, recycling (cost and complexity) and disposal. The quests for new catalyst immobilization or recovery strategies to facilitate its reuse are incessant. The attachment of the catalyst on a solid support has been widely studied but has not received, so far, industrial application.


Ionic Liquid Molten Salt Biphasic System Homogeneous Catalysis Rhodium Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cornils, B. (1998) Aqueous-Phase Organometallic Catalysis, Concepts and Applications, Wiley-VCH, Weinheim.Google Scholar
  2. 2.
    Verspui, G., ten Brink, G., and Sheldon, R.A. (1999) Organometallic Catalysis in aqueous Biphasic Media, Chemtracts 12, 777–796.Google Scholar
  3. 3.
    Frietas, E.R. and Gum, C.R. (1979) Shell’s Higher Olefins Process, Chem. Eng. Prog., [Jan], 73–76Google Scholar
  4. 4.
    Horvath, I.H. (1998) Fluorous Biphasic Chemistry, Acc. Chem. Res. 31, 641–650.CrossRefGoogle Scholar
  5. 5.
    Leitner, W. (1999) Reaction in Supercritical Carbon Dioxide, in P. Knochel (ed.), Topics in Current Chemistry, Springer, Berlin, 206, 107–132.Google Scholar
  6. 6.
    Borrmann, T., Roesky, H.W., and Ritter, U. (2000) Biphasic hydroformylation of olefins using a novel water soluble rhodium polyethylene glycolate catalyst, J. Mol. Catal. 153, 31–48.CrossRefGoogle Scholar
  7. 7.
    Reichardt, C. (1990) Solvents and Solvent Effect in Organic Reactions, Wiley-VCH, Weinheim.Google Scholar
  8. 8.
    Olivier, H. (1998) Non-Aqueous Ionic Liquids (NAIL’s) in B. Cornils and W.A. Herrmann (eds.), Aqueous-Phase Organometallic Catalysis, Concepts and Applications, Wiley-VCH, Weinheim, pp. 555–563.Google Scholar
  9. 9.
    Freemantle, M. (1998) Designer Solvents, Chem. Eng. News, 76 [March 30th], 32–37.CrossRefGoogle Scholar
  10. 10.
    Chauvin, Y. and Olivier, H. (1995) Non-Aqueous Ionic Liquids as Reaction Solvents, Chemtech, [Sept], 26–30.Google Scholar
  11. 11.
    Seddon, K.R. and Holbrey, J.D. (1999) Ionic Liquids, Clean Products and Processes 1, 232–236.Google Scholar
  12. 12.
    Welton, T. (1999) Room-Temperature Ionic Liquids. Solvents and Catalysis, Chem. Rev. 99, 2071–2083.CrossRefGoogle Scholar
  13. 13.
    Parshall, G.W. (1972) Catalysis in Molten Salts, J. Am. Chem. Soc. 94, 8716–8719.CrossRefGoogle Scholar
  14. 14.
    Knifton, J.F., Grigsby, R.A., and Herbstman, S. (1994) Make alcohol-ester fuels from syngas, Hydrocarbon Processing 111–115.Google Scholar
  15. 15.
    Hussey, C.L. (1994) The electrochemistry of room-temperature haloaluminate molten salts, in A.I. Popov and G. Mamantov. (eds), Chemistry of Nonaqueous Solutions: Current Progress, VCH, New-York, pp. 227–275Google Scholar
  16. 16.
    Osteryoung, R.A. (1987) Organic Chloroaluminate Ambient Temperature Molten Salts, in G. Mamantov and R. Marassi (eds.), Molten Salts Chemistry, D. Reidel Publishing Company, Boston, pp 329–364.CrossRefGoogle Scholar
  17. 17.
    Chauvin, Y. Einloft, S., and Olivier, H. (1995) Catalytic Dimerization of Propene by Nickel-Phosphine Complexes in 1-Buty1-3-methylimidazolium Chloride/AlEtxCl3-x (x=0,1) Ionic Liquids, Ind. Eng. Chem. 34, 1149–1155.CrossRefGoogle Scholar
  18. 18.
    Chauvin, Y., Mussmann, L., and Olivier, H. (1995) A Novel Class of Versatile Solvents for Two-Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation of alkenes Catalyzed by Rhodium Complexes in liquid 1,3-Dialkylimidazolium Salts, Angew. Chem. Int. Ed. Eng. 34, 23–24.Google Scholar
  19. 19.
    Barhman, H. (1999) Nichtwässrige ionogene Ligandflussigkeiten, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatorbestandteil, European Patent EP 0924218A1 (to Celanese).Google Scholar
  20. 20.
    Haggin, J. (1995) Chem. Eng. News, 73 [April 17th], 25.CrossRefGoogle Scholar
  21. 21.
    Blanchard, L.A., Hancu, D., Beckman, E.J. and Brennecke, J.F. (1999) Green processing using ionic liquids and CO 2, Nature 399 [May 6th], 28–29.CrossRefGoogle Scholar
  22. 22.
    Keim, W., Vogt. D, Waffenschmidt, H., and Wasserscheid, P. (1999) New Method to recycle homogeneous catalysts from monophasic reaction mixtures by using an ionic liquid exemplified for the Rh-catalysed hydroformylation of methy1-3-pentenoate, J. Catal. 186, 481–484.CrossRefGoogle Scholar
  23. 23.
    Chauvin, Y., Gaillard, J.F., Dang Vu, Q., and Andrews, J.W. (1974) The IFP Dimersol process for the dimerization of C 3 and C 4 olefinic cuts, Chem. Ind. 375–378.Google Scholar
  24. 24.
    Wilke, G., Bogdanovic, B., Hart, P., Heimbach, O., Kroner, W., Oberkirch, W., Tanaka, K., Steinrücke, E., Walter, D., and Aimmerman, H. (1966) AUy1-Transition Metal systems, Angew. Chem. Int. Ed. Engl. 5, 151–164.CrossRefGoogle Scholar
  25. 25.
    Gilbert, B., Chauvin. Y, Olivier, H., and Di Marco-Van Tiggelen, F. (1995) Disproportionation of Polynuclear Chloroethylaluminate Anions in Acidic 1-Butyl-3-methylimidazolium Chloride AlEtCl 2 Molten Salts in Presence of a Hydrocarbon Phase, J. Chem. Soc. Dalton Trans. 3867–3871. Gilbert, B., Chauvin, Y., and Guibard, I. (1991) Investigation by Raman spectrometry of a new room-temperature organochloroaluminate molten salt, Vibrational Spectroscopy 1, 299-304.Google Scholar
  26. 26.
    Sato, H. Nogushi, T., and Yasui, S. (1993) Dimerization of propene to 2,3-dimethylbutenes, Bull. Chem. Soc. Jpn. 66, 3079–3084. Anon., (1990) Chem. Britain 26, 400.CrossRefGoogle Scholar
  27. 27.
    Ellis, B., Keim, W., and Wasserscheid, P. (1999) Linear Dimerization of but-1-ene in biphasic mode using buffered chloroaluminate ionic liquid solvents, Chem. Commun. 337–338.Google Scholar
  28. 28.
    Chauvin, Y., Hirschauer, A., and Olivier, H. (1994) Alkylation of isobutane with 2-butene using 1-buty1-3-methylimidazolium chloride-aluminium chloride molten salts as catalysts, J. Mol. Catal. 92, 155–165.CrossRefGoogle Scholar
  29. 29.
    Olivier, H., Commereuc, D., Hugues, F., and Forestiere, A. (1998) European patent EP 984012021 (to IFP).Google Scholar
  30. 30.
    Abdul-Sada, A.K., Seddon, K.R., and Steward, N.J. (1995) World Pat. Appl. 95/21872 (to BP Chemicals).Google Scholar
  31. 31.
    Abdul-Sada, A.K., Ambler, P.W., Seddon, K.R., and Steward, N.J. (1995) World Pat. Appl. 95/21871 (to BP Chemicals).Google Scholar
  32. 32.
    Abdul-Sada, A.K., Atkins, M.P., and Ellis, B. (1995) World Pat. Appl WO 95/21806 (to BP Chemicals).Google Scholar
  33. 33.
    Sherif, F.G., Shyu, L., Greco, C., Talma, A.G., and Lacroix, C. (1998) World Pat. Appl. 98/03454 (to Akzo Nobel).Google Scholar
  34. 34.
    Roberts, G., Lok, C.M., Adams, C.J., Seddon, K.R., Earle, M.E. and Hamill, J. (1998) World Pat. Appl. 98/07680 (to Unichema Chemie).Google Scholar
  35. 35.
    Roberts, G., Lok, C.M., Adams, C.J., Seddon, K.R., Earle, M.E., and Hamill, J. (1998) World Pat. Appl. 98/07679 (to Unichema Chemie).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • H. Olivier-Bourbigou
    • 1
  • F. Hugues
    • 2
  1. 1.Institut Français du PétroleRueil-MalmaisonFrance
  2. 2.Centre d’Etude et de Developpement IndustrielInstitut Français du PétroleVernaisonFrance

Personalised recommendations