Skip to main content

Applications of Ionic Liquids to Biphasic Catalysis

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

Homogeneous catalysis offers many advantages that mainly originate from the structure of the catalyst. For example, most of the time, it is possible to control the steric and electronic properties of the active species by tuning the main central atom and ligands. Therefore, high activities and selectivities (regio-, chemio-, enantio-) can be expected. From an industrial point of view, the easy mixing and reaction heat removal ensure good temperature control and avoid any diffusion problem. Reaction section is simple and low investment costs are required for mild reaction conditions. Operations are flexible. Catalyst rate can be adjusted to reaction feed rate, taking into account the presence of feed impurities, to maintain the conversion and the selectivity. However, while the solubility of the catalyst constitutes a major advantage in terms of catalyst site availability, it also constitutes a major drawback in terms of catalyst separation, recycling (cost and complexity) and disposal. The quests for new catalyst immobilization or recovery strategies to facilitate its reuse are incessant. The attachment of the catalyst on a solid support has been widely studied but has not received, so far, industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornils, B. (1998) Aqueous-Phase Organometallic Catalysis, Concepts and Applications, Wiley-VCH, Weinheim.

    Google Scholar 

  2. Verspui, G., ten Brink, G., and Sheldon, R.A. (1999) Organometallic Catalysis in aqueous Biphasic Media, Chemtracts 12, 777–796.

    CAS  Google Scholar 

  3. Frietas, E.R. and Gum, C.R. (1979) Shell’s Higher Olefins Process, Chem. Eng. Prog., [Jan], 73–76

    Google Scholar 

  4. Horvath, I.H. (1998) Fluorous Biphasic Chemistry, Acc. Chem. Res. 31, 641–650.

    Article  CAS  Google Scholar 

  5. Leitner, W. (1999) Reaction in Supercritical Carbon Dioxide, in P. Knochel (ed.), Topics in Current Chemistry, Springer, Berlin, 206, 107–132.

    Google Scholar 

  6. Borrmann, T., Roesky, H.W., and Ritter, U. (2000) Biphasic hydroformylation of olefins using a novel water soluble rhodium polyethylene glycolate catalyst, J. Mol. Catal. 153, 31–48.

    Article  CAS  Google Scholar 

  7. Reichardt, C. (1990) Solvents and Solvent Effect in Organic Reactions, Wiley-VCH, Weinheim.

    Google Scholar 

  8. Olivier, H. (1998) Non-Aqueous Ionic Liquids (NAIL’s) in B. Cornils and W.A. Herrmann (eds.), Aqueous-Phase Organometallic Catalysis, Concepts and Applications, Wiley-VCH, Weinheim, pp. 555–563.

    Google Scholar 

  9. Freemantle, M. (1998) Designer Solvents, Chem. Eng. News, 76 [March 30th], 32–37.

    Article  Google Scholar 

  10. Chauvin, Y. and Olivier, H. (1995) Non-Aqueous Ionic Liquids as Reaction Solvents, Chemtech, [Sept], 26–30.

    Google Scholar 

  11. Seddon, K.R. and Holbrey, J.D. (1999) Ionic Liquids, Clean Products and Processes 1, 232–236.

    Google Scholar 

  12. Welton, T. (1999) Room-Temperature Ionic Liquids. Solvents and Catalysis, Chem. Rev. 99, 2071–2083.

    Article  CAS  Google Scholar 

  13. Parshall, G.W. (1972) Catalysis in Molten Salts, J. Am. Chem. Soc. 94, 8716–8719.

    Article  CAS  Google Scholar 

  14. Knifton, J.F., Grigsby, R.A., and Herbstman, S. (1994) Make alcohol-ester fuels from syngas, Hydrocarbon Processing 111–115.

    Google Scholar 

  15. Hussey, C.L. (1994) The electrochemistry of room-temperature haloaluminate molten salts, in A.I. Popov and G. Mamantov. (eds), Chemistry of Nonaqueous Solutions: Current Progress, VCH, New-York, pp. 227–275

    Google Scholar 

  16. Osteryoung, R.A. (1987) Organic Chloroaluminate Ambient Temperature Molten Salts, in G. Mamantov and R. Marassi (eds.), Molten Salts Chemistry, D. Reidel Publishing Company, Boston, pp 329–364.

    Chapter  Google Scholar 

  17. Chauvin, Y. Einloft, S., and Olivier, H. (1995) Catalytic Dimerization of Propene by Nickel-Phosphine Complexes in 1-Buty1-3-methylimidazolium Chloride/AlEtxCl3-x (x=0,1) Ionic Liquids, Ind. Eng. Chem. 34, 1149–1155.

    Article  CAS  Google Scholar 

  18. Chauvin, Y., Mussmann, L., and Olivier, H. (1995) A Novel Class of Versatile Solvents for Two-Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation of alkenes Catalyzed by Rhodium Complexes in liquid 1,3-Dialkylimidazolium Salts, Angew. Chem. Int. Ed. Eng. 34, 23–24.

    Google Scholar 

  19. Barhman, H. (1999) Nichtwässrige ionogene Ligandflussigkeiten, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatorbestandteil, European Patent EP 0924218A1 (to Celanese).

    Google Scholar 

  20. Haggin, J. (1995) Chem. Eng. News, 73 [April 17th], 25.

    Article  Google Scholar 

  21. Blanchard, L.A., Hancu, D., Beckman, E.J. and Brennecke, J.F. (1999) Green processing using ionic liquids and CO 2, Nature 399 [May 6th], 28–29.

    Article  Google Scholar 

  22. Keim, W., Vogt. D, Waffenschmidt, H., and Wasserscheid, P. (1999) New Method to recycle homogeneous catalysts from monophasic reaction mixtures by using an ionic liquid exemplified for the Rh-catalysed hydroformylation of methy1-3-pentenoate, J. Catal. 186, 481–484.

    Article  CAS  Google Scholar 

  23. Chauvin, Y., Gaillard, J.F., Dang Vu, Q., and Andrews, J.W. (1974) The IFP Dimersol process for the dimerization of C 3 and C 4 olefinic cuts, Chem. Ind. 375–378.

    Google Scholar 

  24. Wilke, G., Bogdanovic, B., Hart, P., Heimbach, O., Kroner, W., Oberkirch, W., Tanaka, K., Steinrücke, E., Walter, D., and Aimmerman, H. (1966) AUy1-Transition Metal systems, Angew. Chem. Int. Ed. Engl. 5, 151–164.

    Article  CAS  Google Scholar 

  25. Gilbert, B., Chauvin. Y, Olivier, H., and Di Marco-Van Tiggelen, F. (1995) Disproportionation of Polynuclear Chloroethylaluminate Anions in Acidic 1-Butyl-3-methylimidazolium Chloride AlEtCl 2 Molten Salts in Presence of a Hydrocarbon Phase, J. Chem. Soc. Dalton Trans. 3867–3871. Gilbert, B., Chauvin, Y., and Guibard, I. (1991) Investigation by Raman spectrometry of a new room-temperature organochloroaluminate molten salt, Vibrational Spectroscopy 1, 299-304.

    Google Scholar 

  26. Sato, H. Nogushi, T., and Yasui, S. (1993) Dimerization of propene to 2,3-dimethylbutenes, Bull. Chem. Soc. Jpn. 66, 3079–3084. Anon., (1990) Chem. Britain 26, 400.

    Article  CAS  Google Scholar 

  27. Ellis, B., Keim, W., and Wasserscheid, P. (1999) Linear Dimerization of but-1-ene in biphasic mode using buffered chloroaluminate ionic liquid solvents, Chem. Commun. 337–338.

    Google Scholar 

  28. Chauvin, Y., Hirschauer, A., and Olivier, H. (1994) Alkylation of isobutane with 2-butene using 1-buty1-3-methylimidazolium chloride-aluminium chloride molten salts as catalysts, J. Mol. Catal. 92, 155–165.

    Article  CAS  Google Scholar 

  29. Olivier, H., Commereuc, D., Hugues, F., and Forestiere, A. (1998) European patent EP 984012021 (to IFP).

    Google Scholar 

  30. Abdul-Sada, A.K., Seddon, K.R., and Steward, N.J. (1995) World Pat. Appl. 95/21872 (to BP Chemicals).

    Google Scholar 

  31. Abdul-Sada, A.K., Ambler, P.W., Seddon, K.R., and Steward, N.J. (1995) World Pat. Appl. 95/21871 (to BP Chemicals).

    Google Scholar 

  32. Abdul-Sada, A.K., Atkins, M.P., and Ellis, B. (1995) World Pat. Appl WO 95/21806 (to BP Chemicals).

    Google Scholar 

  33. Sherif, F.G., Shyu, L., Greco, C., Talma, A.G., and Lacroix, C. (1998) World Pat. Appl. 98/03454 (to Akzo Nobel).

    Google Scholar 

  34. Roberts, G., Lok, C.M., Adams, C.J., Seddon, K.R., Earle, M.E. and Hamill, J. (1998) World Pat. Appl. 98/07680 (to Unichema Chemie).

    Google Scholar 

  35. Roberts, G., Lok, C.M., Adams, C.J., Seddon, K.R., Earle, M.E., and Hamill, J. (1998) World Pat. Appl. 98/07679 (to Unichema Chemie).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olivier-Bourbigou, H., Hugues, F. (2003). Applications of Ionic Liquids to Biphasic Catalysis. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics