The Past, Present and Future of Ionic Liquids as Battery Electrolytes

  • John S. Wilkes
Part of the NATO Science Series book series (NAII, volume 92)


Batteries and similar electrochemical devices are a means to convert stored chemical energy directly into electrical power. They occupy a large niche in electrical power storage and generation applications. Batteries are used to provide low power over long times and high pulsed power for short times. They find applications in consumer appliances and electronics, industry, transportation, military systems and spacecraft. Batteries are simple in concept, but the wide range of applications results in a plethora of chemistries and designs.


Ionic Liquid Molten Salt Propylene Carbonate Electrochemical Window Molten Carbonate Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jasinski, R. (1967) High Energy Batteries, Plenum Press, New York, p. vi.Google Scholar
  2. 2.
    Mamantov, G., (1980) Molten salt electrolytes in secondary batteries, in D. W. Murphy, J. Broadhead and B.C.H. Steele (eds.), Materials for Advanced Batteries, Plenum Press, New York, pp. 111–122.CrossRefGoogle Scholar
  3. 3.
    Gordon, R. S. (1982) Sodium-sulfur cells with beta alumina electrolyte, in C. W. Tobias (ed.), Assessment of Research Needs for Advanced Battery Systems, National Academy Press, Washington, DC, p.l39.Google Scholar
  4. 4.
    Fannin, Jr., A. A., Floreani, D. A., King, L. A., Landers, J. S., Piersma, B. J., Stech, D.J., Vaughn, R. L., Wilkes, J.S. and Williams, J. L., (1984) Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities and viscosities, J. Phys. Chem. 88, 2614–2621.CrossRefGoogle Scholar
  5. 5.
    Bonhote, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M., (1996) Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35, 1168–1178.CrossRefGoogle Scholar
  6. 6.
    Linden, D. (1984) Handbook of Batteries and Fuel Cells, McGraw-Hill Book Co., New York, p. C-4.Google Scholar
  7. 7.
    Specific conductivity calculated from equivalent conductivities reported in Mukherjee, L. M., and Boden, D. P. (1969) Equilibria in propylene carbonate. I. Viscosity and conductance studies of some lithium and quaternary ammonium salts, J. Phys. Chem. 74, 1942–1946.CrossRefGoogle Scholar
  8. 8.
    Boxall, L. G., Jones, H. L., and Osteryoung, R. A. (1973) Solvent equilibria of AlCl3-NaCl melts, J. Electrochem. Soc. 120, 223–231.CrossRefGoogle Scholar
  9. 9.
    Lipsztajn, M., and Osteryoung, R. A. (1983) Increased electrochemical window in ambient temperature neutral ionic liquids, J. Electrochem. Soc. 130, 1312–1318.CrossRefGoogle Scholar
  10. 10.
    Bard, A.J. and Faulkner, L. R. (1980) Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, New York, p. 721.Google Scholar
  11. 11.
    Guidotti, R. A (1995) Thermal batteries: A technology review and future directions, Proceedings of the International SAMPE Technology Conference 27, 807–818.Google Scholar
  12. 12.
    Nardi, J., Hussey, C. L., Erbacher, J. K., King, L.A., and Fannin, A. A. (1978) Molybdenum chloride-tetrachloroaluminate thermal battery, U.S. Patent 4, 117,207.Google Scholar
  13. 13.
    Hussey, C.L. (1994) The electrochemistry of room-temperature haloaluminate molten salts, in G. Mamantov and A. I. Popov (eds.), Chemistry of Nonaqueous Solutions, VCH Publisher Inc., New York, pp.227–276.Google Scholar
  14. 14.
    Bohm, H., and Steiner, R. (1998) The importance of the molten salt electrolyte for the ZEBRA battery system, Molten Salt Forum 5-6, 517–520.Google Scholar
  15. 15.
    Kaun, T. D., Nelson, P. A., Redey, L., Vissers, D. R., and Henriksen, G. L. (1993) High temperature lithium/sulfide batteries, Electrochim. Acta 38, 1269–1287.CrossRefGoogle Scholar
  16. 16.
    Henriksen, G. L. and Vissers, D. R. (1994) Lithium-aluminum/iron sulfide batteries, J. Power Sources 51, 115–128.CrossRefGoogle Scholar
  17. 17.
    Vissers, D. R., Redey, L., and Kaun, T. D. (1989) Molten salt electrolytes for high-temperature lithium cells, J. Power Sources 26, 37–48.CrossRefGoogle Scholar
  18. 18.
    Mamantov, G, Tanemoto, K., and Ogata, Y. (1983) Two-plateau rechargeable sodium/sulfur(IV) molten chloroaluminate cell, J. Electrochem. Soc. 130, 1528–1531.CrossRefGoogle Scholar
  19. 19.
    Caja, J., Dunstan, D., and Mamantov, G. (1991) A practical sodium/sulphur(IV) molten chloroaluminate cell, Power Sources 13, 333–346.Google Scholar
  20. 20.
    Selman, J.R. (1993) Research, development, and demonstration of molten carbonate fuel cell systems, in L. J. M. J. Blomen and M. N. Mugerwa (eds.), Fuel Cell Systems, Plenum Press, New York, pp. 345–463.Google Scholar
  21. 21.
    Wendt, H., Brenscheidt, T., and Kah, K. (1999) Different molten alkali carbonate eutectics as fuel cell electrolytes for MCFCs, Molten Salts Bulletin 67, 2–17.Google Scholar
  22. 22.
    Hurley, F.H. (1948) Electrodeposition of aluminum, U.S. Patent 2,446, 331.Google Scholar
  23. 23.
    Hurley, F., and Wier, T. (1951) Electrodeposition of metals from fused quaternary ammonium salts, J. Electrochem. Soc. 98, 203–206.CrossRefGoogle Scholar
  24. 24.
    Takahashi, S., Koura, N., and Nakamima, R. (1986) Characteristics of the aluminum chloride-1-butylpyridinium chloride electrolyte for the aluminum/iron sulfide (FeS2) secondary cell, Denki Kagaku 54 263–268.Google Scholar
  25. 25.
    Sanders, J, Ward, E., and Hussey, C. L. (1986) Aluminum bromide-1-methy1-3-ethylimidazolium bromide ionic liquids. I. Densities, viscosities, electrical conductivities, and phase transitions, J. Electrochem. Soc. 133, 325–30.CrossRefGoogle Scholar
  26. 26.
    Vaughn, R.L. (1992) Molten-electrolyte batteries with active metal anodes, U.S. Patent 5,171,649.Google Scholar
  27. 27.
    Melton, T. J., Joyce, J., Maloy, J.T., and Wilkes, J. S. (1990) Electrochemical studies of sodium chloride as a Lewis buffer for room temperature chloroaluminate molten salts, J. Electrochem. Soc 137, 3865–3869.CrossRefGoogle Scholar
  28. 28.
    Vestergaard, B., Bjerrum, N. J., Petrushina, I., Hjuler, H. A., Berg, R. W., and Begtrup, M. (1993) Molten triazolium chloride systems as new aluminum battery electrolytes, J. Electrochem. Soc. 140, 3108–3113.CrossRefGoogle Scholar
  29. 29.
    Auborn, J.J. and Barberio, Y. L. (1985) An ambient temperature secondary aluminum electrode: its cycling rates and its cycling efficiencies, J. Electrochem. Soc. 132, 598–601.CrossRefGoogle Scholar
  30. 30.
    Jones, S.D., and Blomgren, G. E., (1989) Low-temperature molten salt electrolytes based on aralkyl quaternary or ternary onium salts, J. Electrochem. Soc. 136, 424–427.CrossRefGoogle Scholar
  31. 31.
    Blomgren, G.E., and Jones, S. D. (1993) Low temperature molten compositions comprised of quaternary alkyl phosphonium salts, U.S. Patent 5,188,914.Google Scholar
  32. 32.
    Wilkes, J.S., and Zaworotko, M. J. (1992) Air and water stable 1-ethy1-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. 965–967.Google Scholar
  33. 33.
    Fuller, J. Carlin, R.T., DeLong, H.C., and Haworth, D., (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts, J. Chem. Soc., Chem. Commun. 299–300.Google Scholar
  34. 34.
    Fuller, J, Carlin, R. T., Osteryoung, R.A. (1997) The room temperature ionic liquid 1-ethy1-3-methylimidazolium tetrafiuoroborate: electrochemical couples and physical properties, J. Electrochem. Soc. 144, 3881–3886.CrossRefGoogle Scholar
  35. 35.
    Mutch, M.L. and Wilkes, J. S. (1998) Thermal analysis of 1-ethy1-3-methylimidazolium tetrafluoroborate molten salt, Electrochem. Soc. Proceedings 98-11, 254–260.Google Scholar
  36. 36.
    Golding, J., MacFarlane, D.R., and Forsyth, M. (1998) Imidazolium room temperature molten salt systems, Molten Salt Forum 5-6, 589–592.Google Scholar
  37. 37.
    Cooper, E.I., and O’Sullivan, E. J. M. (1992) New, stable, ambient-temperature molten salts, Proc. Electrochem. Soc. 16, 386–396.Google Scholar
  38. 38.
    Sun, J., MacFarlane, D. R., and Forsyth, M. (1997) Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion, Ionics 3, 356–362.CrossRefGoogle Scholar
  39. 39.
    Angell, C. A., Fan, J., Liu, C., Sanchez, E. and Xu, K. (1994) Li-conducting ionic rubbers for lithium battery and other applications, Solid State Ionics 69, 343–353.CrossRefGoogle Scholar
  40. 40.
    Angell, C. A., Liu, C., and Sanchez, E., (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity, Nature 362, 137–139.CrossRefGoogle Scholar
  41. 41.
    Angell, C. A., Xu, K., Zhang, S-S., and Videa, M. (1996) Variations on the salt-polymer electrolytes theme for flexible solid electrolytes, Solid State Ionics 86-88, 17–28.CrossRefGoogle Scholar
  42. 42.
    Fuller, J., Breda, A. C., and Carlin, R. T. (1997) Ionic liquid-polymer gel electrolytes, J. Electrochem. Soc. 144, L67–L69.CrossRefGoogle Scholar
  43. 43.
    Fuller, J., Breda, A.C., and Carlin, R. T. (1998) Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, J. Electroanal. Chem. 459, 29–34.CrossRefGoogle Scholar
  44. 44.
    Carlin, R. T., Fuller, J., Kuhn, W. K., Lysaught, M.J., and Trulove, P. C. (1996) Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes, J. Appl. Electrochem. 26, 1147–1160.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • John S. Wilkes
    • 1
  1. 1.Department of ChemistryUnited States Air Force AcademyUSAF AcademyUSA

Personalised recommendations