Skip to main content

Modelling the Liquid Behaviour of Ionic Liquids

  • Chapter
Book cover Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

  • 727 Accesses

Abstract

There currently exist a number of theoretical works on the study of contact melting, and the ionic liquids formed by this method. It is possible to select several directions from these studies. One of them is a study of the kinetics of growth of the fluid area in binary systems. Considering a pair of regular displacement boundaries, 1 and 2, a fluid phase forms under the conditions of contact melting, controlled by the kinetics of the diffusion process. Let the value of the concentration for the material of type B between the boundaries for the liquid phase be and for the solid phase be. During the period of time dt, the diffusion flow J L1 from the melt to the boundary allows the passage of Sdt atoms of B, where S is the area of the interface. In the same time period, the diffusion flow J s1 to the boundary in the solid phase allows the passage Sdt atoms of B. If the quasiequation, and, do not change during the process, the difference (J L1J s1) must be created in the volume element Sd/1 at the boundary, and the difference of material B must equal During the time period dt, the boundary will move a distance d/1. Thus: Using Fick’s first law: where f 1(t) is a function of time. Expanding the terms from equation where α1 and b1 are time-independent parameters.

Kabardino-Balkarian State University, Nalchik, Kabardino-Balka

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Popov A.A. (1951) The accelerated definition of the diffusion factor’s in the melts systems, J. Zavodskaia Laboratoria, 6, 684–688.

    Google Scholar 

  2. Chebzuthov A.A. (1971) About the Nature and some Laws of Contact Melts, University Press, Nalchik, Russia, p. 192.

    Google Scholar 

  3. Chebzuthov A.A. and Savintsev P.A. (1971) Contact melts of crystals, VINITI Preprint No 2350-70 (18).

    Google Scholar 

  4. Savintsev P.A., Zil’berman P.P., Savintsev A.P. (1987) Physics of Contact Melts, University Press, Nalchik, Russia, p. 78.

    Google Scholar 

  5. Zil’berman P.F. (1981) Use of numerical methods for the research of contact melts of ionic crystals, VINITI Preprint No 1097-81 (4).

    Google Scholar 

  6. Savintsev, P. A., Averichieva, V. E. and Kostyukevich, M. V. (1960) The speed of the contact melting of alkali halide crystals, Izvest. Vysshikh Ucheb. Zavedenii, Fiz., 107–109.

    Google Scholar 

  7. Grot, S.Ds. and Mazyr P. (1964) Thermodynamics, Mir, Moscow, p. 219.

    Google Scholar 

  8. Potter D. (1975) Computing Methods in Physics, Mir, Moscow, p. 392.

    Google Scholar 

  9. Zil’berman P.F., Savintsev P.A. and Abibulaev R.A. (1985) Use of numerical methods for the analysis of the influence of an external field on the process of contact melts, VINITI Preprint No 2671-85 (12).

    Google Scholar 

  10. Zil’berman, P. F., Savintsev, P.A., and Gazaryan, R. M. (1986) Study of the concentration distribution in contact melting in a temperature-gradient field, Inzh.-Fiz. Zh., 51, 822–824.

    CAS  Google Scholar 

  11. Ralson A., Wilf W. (1966) Mathematical Methods for Digital Computers, Wiley, New York.

    Google Scholar 

  12. Cheerman D.B. (1990) Methods of Computer Experiments in Theoretical Physics, Nauka, Moscow, p. 176.

    Google Scholar 

  13. Metropolis, N., Rosenblum, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) Equation-of-state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092.

    Article  CAS  Google Scholar 

  14. Wood, W.W. (1968) Monte Carlo studies of simple liquid models, Phys. Simple Liquids, 115–230.

    Google Scholar 

  15. Alder, B. J., Frankel, S.P. and Lewinson, V. A. (1955) Radial distribution function calculated by the Monte-Carlo method for a hard sphere fluid, J. Chem. Phys., 23, 417–419.

    Article  CAS  Google Scholar 

  16. Wood W.W. and Parker F.R. (1965) J. Chem. Phys. 42, 720–745.

    Article  Google Scholar 

  17. Khaimenov, A. P., Goryaeva, L.I. and Lystsov, A. A. (1987) Simulation of sodium chloride, potassium chloride, and 0.5 sodium chloride + 0.5 potassium chloride melts by the Monte Carlo method using the Gordon-Kim potential, Rasplavy, 1, 104–111.

    CAS  Google Scholar 

  18. Polukhin, V. A., Ukhov, V.F. and Dzugutov, M. M. (1981) Computer Modelling of the Dynamics and Structure of Liquid Metals.

    Google Scholar 

  19. Hocni P. and Istwood D. (1987) The Computer Simulation of the Practical Methods, p. 638.

    Google Scholar 

  20. Wilson, M. and Madden, P. A. (1994) “Prepeaks” and “first sharp diffraction peaks” in computer simulations of strong and fragile ionic liquids, Phys. Rev. Lett., 72, 3033–3036.

    Article  CAS  Google Scholar 

  21. Joubert, L., Picard, G. and Legendre, J.J. (1998) Computational study of lanthanide halide complexes in a molten salt environment, Molten Salt Forum, 5-6, 197–200

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gontcharenko, E.A., Zil’Berman, P.F., Znamenskii, V.S. (2003). Modelling the Liquid Behaviour of Ionic Liquids. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics