Skip to main content

Pressure in fluids in the presence of gravity

  • Chapter
Teaching Physics

Abstract

So much has been written about the word “model” that one hesitates to use it. It has nevertheless been used here and there in the previous chapters, primarily to draw attention to the distinction between something constructed from a description of reality on the one hand and an ordinary object on the other. The words “theory” or “theoretical” very soon appear if a more elaborate definition of the term “model” is attempted, since it is difficult to imagine an object without doing anything with it and that is when a theory is required. Here we will be trying to devise a model for the study of fluids in equilibrium in the presence of gravity, and the theory involved will be Newtonian theory, whether for static or kinetic analysis; the latter will also bring a statistical approach to the study of the dynamics of the particles involved.

In association with Ugo Bessen, the main author of the study

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, B. 1986. The experiential Geistalt of Causation: a common core to pupils preconceptions in science. European Journal of Science Education, 8(2), pp 155–171.

    Article  Google Scholar 

  • Andersson B., Bach F. 1996. Developing New Teaching Sequences in Science: The Example of “Gases and Their Properties”. In G. Welford, J. Osborne J. & P. Scott (Eds.): Research in Science Education in Europe, Current Issues and Themes, London: The Falmer Press.

    Google Scholar 

  • Besson, U. 1990. Una ricerca didattica sul concetto di pressione, Tesi di laurea, University of Rome, 1990.

    Google Scholar 

  • Besson U. 1995. La pressione. La Fisica nella scuola, 28(1), pp 8–14.

    Google Scholar 

  • Besson, U. 1997. La pression dans les fluides, Mémoire de DEA de Didactique des disciplines, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Besson U. 2001. Une approche mésoscopique pour l’enseignement de la statique des fluides. Étude des raisonnements des apprenants, élaboration et expérimentation d’une séquence d’enseignement, Thesis, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Besson, U., Lega, J. & Viennot, L. 2001a. Using anchoring conceptions for teaching statics of fluides. In R. Pinto and R. Surinach (Eds): Physics Teacher Education Beyond 2000, Selected contributions to International Conference: GIREP 2000, Barcelona, Paris: Elsevier, pp. 281–284.

    Google Scholar 

  • Besson U, Viennot L. & Lega J. 2001b. “A mesoscopic model of liquids for teaching statics of fluids”. In R. Pinto & R. Surinach (Eds): Science Education Research in the Knowledge Based Society, Proceedings of the Third International Conference of ESERA, Thessaloniki, pp. 304–306.

    Google Scholar 

  • Borghi, L., De Ambrosis, C., Invernizzi, P. & Mascheretti, P. 1996. Un modèle pour la compréhension des propriétés des liquides, Didaskalia,. 8, pp. 139–153.

    Google Scholar 

  • Brasquet, M. 1999. Actions, interactions et schématisation, Bulletin de l’Union des Physiciens, no816, pp. 1220–1236.

    Google Scholar 

  • Brook, A., Briggs, H. & Driver, R. 1984. Aspects of the secondary students’ understanding of the particular nature of matter. Chidren’s Learning in Science Project, Center for Studies in Science and Mathematics Education. University of Leeds, Leeds.

    Google Scholar 

  • Cantelaube F. 1997. Le trou du tas de sable, Bulletin de la Société Française de Physique, 108, pp..3–6.

    Google Scholar 

  • Cates M.E., Wittmer J.P., Bouchaud J.-P. & Claudin P. 1999. Jamming and static stress transmission in granular materials, Chaos, 9(3), pp. 511–522.

    Article  Google Scholar 

  • Chomat, A., Larcher, C. & Méheut, M. 1988. Modèle particulaire et activités de modélisation en classe de quatrième. Aster 1, pp. 143–184.

    Google Scholar 

  • Clement, J., Brown, D. & Zietsman, A. 1989. Not all Preconceptions are Misconceptions: Finding “Anchoring Conceptions” for Grounding Instruction on Students’ Intuitions, International Journal of Science Education., 11(5), pp. 554–565.

    Article  Google Scholar 

  • Diu, B. 1997. Les atomes existent-ils vraiment ? Paris: Odile Jacob.

    Google Scholar 

  • Diu, B., Guthmann, C. Lederer, D. & Roulet, B. 1989, Physique statistique, Paris: Hermann

    Google Scholar 

  • Duhem, P. 1903. L’évolution de la mécanique, edited by A. Brenner (1992), Paris: Vrin

    Google Scholar 

  • Engel E. & Driver, R. 1985. What do Children Understand about Pressure in Fluids? Research in Science and Technological Education, 3, pp. 133–144.

    Article  Google Scholar 

  • Eylon, S. & Ganiel, U. 1990. Macro-micro relationships: the missing link between electrostatics and electrodynamics in students’ reasoning, International Journal of Science Education, 12(1), pp 79–94.

    Article  Google Scholar 

  • Giese, P.A. 1987. Misconceptions about Water Pressure, Proceedings of 2nd International Seminar, Ithaca, Cornell Uninersity, 2, pp. 143–148.

    Google Scholar 

  • Guyon, E., Hulin, J.P. & Petit, L. 1991. Hydrodynamique physique, Paris: InterEditions et CNRS éditions.

    Google Scholar 

  • Härtel, H. 1993. New approach to introduce Basic Concepts in Electricity. In M. Caillot (Ed.), Learning Electricity and Electronics with Advanced Educational Technology, NATO ASI Series F, 115, pp. 5–21, Berlin: Springer-Verlag.

    Google Scholar 

  • Jacquot, D. 2000. Conceptions de l’état gazeux et de la pression des élèves entrant en Seconde, Mémoire de Tutorat, DEA de Didactiqu, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Kariotoglou, P. & Psillos, D. 1993. Pupils’ Pressure Models and their Implications for Instruction, Research in Science and Technological Education, vol. 11, pp. 95–108.

    Article  Google Scholar 

  • Kariotoglou, P., Koumaras, P. & Psillos, D. 1995. Différentiation conceptuelle: un enseignement d’hydrostatique, fondé sur le développement et la contradiction des conceptions des élèves, Didaskalia, no7, pp. 63–90.

    Google Scholar 

  • Larcher, C., Chomat, A. & Méheut, M. 1988. Modèle particulaire et activité de modélisation en classe de quatrième. Aster, 7, pp. 143–194.

    Google Scholar 

  • Locqueneux, R. 2001. Les théories physiques aux environs de 1900. In Physique et humanités scientifiques. Autour de la réforme de l’enseignement de 1902. N. Hulin (Ed.), Villeneuve d’Ascq: Presses Universitaire du Septentrion.

    Google Scholar 

  • Méheut, M., Chomat, A. & Larcher, C. 1994. Construction d’un modèle cinétique de gaz par des élèves de collège: jeux de questionnement et de simulation. In M. Caillot (Ed.), Actes du Quatrième Séminaire National de la Recherche en Didactique des Sciences Physiques. Amiens, IUFM de Picardie, pp. 53–71.

    Google Scholar 

  • Méheut, M. 1996. Enseignement d’un modèle particulaire cinétique de gaz au collège, Didaskalia, no8, pp. 7–32.

    Google Scholar 

  • Méheut, M. 1997. Designing a learning sequence about a pre-quantitative kinetic model of gases: the parts played by questions and by a computer simulation. International Journal of Science Education., 19(2), pp. 647–660.

    Article  Google Scholar 

  • Ministère de l’Education Nationale, 1999. Programme de la classe de Seconde Générale et Technologique. Bulletin officiel no6 Hors Série, pp. 5–23.

    Google Scholar 

  • Ministère de l’Education Nationale, 2000. Document d’accompagnement du programme de la classe de Seconde Générale et Technologique, Physique et Chimie: CNDP.

    Google Scholar 

  • Piaget, J. & Inhelder, B. 1955. De la logique de l’enfant à la logique de l’adolescent, Paris: Presses Universitaires de France.

    Google Scholar 

  • Piaget, J. & Garcia, R. 1971. Les explications causales, Paris: Presses Universitaires de France.

    Google Scholar 

  • Psillos, D. 1995. Adapting Instruction to Students’ Reasoning. In D. Psillos (ed.). “European Research in Science Education”. Proceedings of the second PhD Summerschool. Leptokaria, Thessaloniki: Art of Text, pp. 57–71.

    Google Scholar 

  • Pugliese Jona, S. 1984. Fisica e labor atorio, Vol.1, Turin: Loescher.

    Google Scholar 

  • Rainson, S. 1995. Superposition des champs électriques et causalité: Etude de raisonnements, élaboration et évaluation d’une intervention pédagogique en classe de Mathématiques Spéciales Technologiques, Thesis, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Rozier, S. 1988. Le raisonnement linéaire causal en thermodynamique classique élémentaire. Thesis, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Rozier, S. & Viennot, L. 1991. Students’ Reasoning in Thermodynamics, International Journal of Science Education, 13(2), pp. 159–170.

    Article  Google Scholar 

  • Savage, S.B. 1998. Physics of dry Granular Media”. In Hermann, Heri, Luding (Eds.): Modeling and Granular Material Boundary Value Problems. NATO ASI Series. Dordrecht: Kluwer, pp 25–95.

    Google Scholar 

  • Séré, M.G. 1982. A Study of some Frameworks Used by Pupils Aged 11 to 13 Years in the Interpretation of Air Pressure, European Journal of Science Education, 4(3), pp. 299–309.

    Article  Google Scholar 

  • Séré, M.G. 1986. Children’s Conceptions of the Gaseous State, European Journal of Science Education, 8(4), pp. 413–425.

    Article  Google Scholar 

  • Sherwood, B.A. & Chabay, R.W. (1993). Electrical Interactions and the Atomic Structure of Matter. In M. Caillot (Ed.), Learning Electricity and Electronics with Advanced Educational Technology, NATO ASI Series F, 115, pp. 23–35, Berlin: Springer-Verlag.

    Google Scholar 

  • Tiberghien, A. 1997. Modelling as a basis for analysing teaching learning situations. Learning and Instruction, 4, pp. 71–87.

    Article  Google Scholar 

  • Viennot, L. 1996. Raisonner en Physique, la part du sens commun. Bruxelles: De Boeck (ou 2001: Reasoning in Physics, the Part of Common Sense, Dordrecht: Kluwer).

    Google Scholar 

  • Viennot, L. & Chauvet, F. 1997. Two dimensions to characterize research based teaching strategies: examples in elementary optics. International Journal of Science Education. 19(10), pp. 1159–1168.

    Article  Google Scholar 

  • Vollebregt, M. 1998. A Problem Posing Approach to Teaching an Initial Particle Model. Utrecht: CD-ß press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Besson, U. (2003). Pressure in fluids in the presence of gravity. In: Viennot, L. (eds) Teaching Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0121-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0121-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1276-1

  • Online ISBN: 978-94-010-0121-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics