Galactic Chemical Evolution: The Solar Neighborhood

  • Yeshe Fenner
  • Brad K. Gibson
Part of the Astrophysics and Space Science Library book series (ASSL, volume 281)

Abstract

Galactic chemical evolution models are presented, based on our software package “Galaxy Evolution tool.” One of the strongest constraints on models of the Milky Way is the metallicity distribution of dwarf stars in the solar neighborhood, since it is sensitive to both star formation history and metallicity evolution. We present a dual-phase metal-enriched infall model that reproduces observed properties in the solar vicinity including the latest metallicity distribution of local K-dwarfs.

We find that a model of Galactic formation in which primordial gas fuels the earliest epoch of star formation, followed by ongoing star formation from newly accreted gas, is able to match empirical constraints. The issue of the nature of infalling gas is addressed through the construction of models which allow the Galactic thin disk to form from slightly metal-enriched gas with α-element enhancement. Implications of these results are discussed in light of recent measurements of Galactic High-Velocity Clouds.

Keywords

Rote PASA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765ADSCrossRefGoogle Scholar
  2. ESA 1997, The Hipparcos and Tycho Catalogues, ESA, SP-1200Google Scholar
  3. Fenner, Y. & Gibson, B.K. 2002, in preparationGoogle Scholar
  4. Fenner, Y., Gibson, B.K., Chiappini, C., Matteucci, F., et al. 2002, in preparationGoogle Scholar
  5. Gibson, B.K., Giroux, M.L., Penton, S.V., Stocke, J.T., et al. 2001, AJ, 547, 3280ADSCrossRefGoogle Scholar
  6. Goswami, A. & Prantzos, N. 2000, A&A, 359, 191ADSGoogle Scholar
  7. Hansen, B.M.S., Brewer, J., Fahlman, G.G., Gibson, B.K., et al. 2002, ApJ, 574, L155ADSCrossRefGoogle Scholar
  8. Hou, J.L., Chang, R., & Fu, C. 1998, in Pacific Rim Conference on Stellar Astrophysics, ed. K.L. Chan, K.S. Cheng & H.P. Singh (San Francisco: ASP), p. 143Google Scholar
  9. Kotoneva, E., Flynn, C., Chiappini, C., & Matteucci, F. 2002, MNRAS, in pressGoogle Scholar
  10. Kroupa, P., Tout, C.A., & Gilmore, G. 1993, MNRAS, 262, 545ADSGoogle Scholar
  11. Limongi, M. & Chieffi, A. 2002, PASA, 19, 246ADSCrossRefGoogle Scholar
  12. Limongi, M., Straniero, O., & Chieffi, A. 2000, ApJS, 129, 625ADSCrossRefGoogle Scholar
  13. Meusinger, H., Stecklum, B., & Reimann, H.-G., 1991, A&A, 245, 57Google Scholar
  14. Prantzos, N. & Silk, J. 1998, ApJ, 507, 229ADSCrossRefGoogle Scholar
  15. Renzini, A. & Voli, M. 1981, A&A, 94, 175ADSGoogle Scholar
  16. Rocha-Pinto, H.-J. & Maciel, W.J. 1996, MNRAS, 279, 447ADSGoogle Scholar
  17. Ryan, S. G., Norris, J. E., & Beers, T. C. 1996, ApJ, 471, 254ADSCrossRefGoogle Scholar
  18. Sembach, K.R., Gibson, B.K., Fenner, Y., & Putman, M.E. 2002, ApJ, 572, 178ADSCrossRefGoogle Scholar
  19. Thielemann, F.-K., Nomoto, K., & Hashimoto, M. 1993, in Origin and Evolution of the Elements, eds. Prantzos, N., Vangioni-Flam, E., Casse, M., Cambridge Univ. Press, Cambridge, p. 297.Google Scholar
  20. Tinsley, B.M. 1980, Fund. Cosm. Phys., 5, 287ADSGoogle Scholar
  21. Twarog, B.A. 1980, ApJ, 242, 242ADSCrossRefGoogle Scholar
  22. Wakker, B.P., Howk, J.C., Savage, B.D., et al. 1999, Nature, 402, 388ADSCrossRefGoogle Scholar
  23. Wyse, R.F.G. & Gilmore, G. 1995, AJ, 110, 2771ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Yeshe Fenner
    • 1
  • Brad K. Gibson
    • 1
  1. 1.Centre for Astrophysics & SupercomputingSwinburne UniversityAustralia

Personalised recommendations