Skip to main content

Indiscernibles, General Covariance, and Other Symmetries: The Case for Non-Reductive Relationalism

  • Chapter
Revisiting the Foundations of Relativistic Physics

Abstract

What is the meaning of general covariance? We learn something about it from the hole argument, due originally to Einstein. In his search for a theory of gravity, he noted that if the equations of motion are covariant under arbitrary coordinate transformations, then particle coordinates at a given time can be varied arbitrarily — they are underdetermined — even if their values at all earlier times are held fixed. It is the same for the values of fields. The argument can also be made out in terms of transformations acting on the points of the manifold, rather than on the coordinates assigned to the points. So the equations of motion do not fix the particle positions, or the values of fields at manifold points, or particle coordinates, or fields as functions of the coordinates, even when they are specified at all earlier times. It is surely the business of physics to predict these sorts of quantities, given their values at earlier times. The principle of general covariance seemed quite untenable.

In honour of Professor Stachel. He will agree with me on points, if not on substance, but I am indebted to him for his guidance on both topics; and on many others besides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, H. 1956. The Leibniz-Clarke Correspondence.

    Google Scholar 

  • Barbour, J. 1999. The End of Time. Oxford: Oxford University Press.

    Google Scholar 

  • Belot, G. 2001. “The Principle of Sufficient Reason.” The Journal of Philosophy XCVIII:55–74.

    Article  Google Scholar 

  • Belot, G., and J. Earman. 1999. “From Metaphysics to Physics.” In From Physics to Philosophy, eds. J. But-terfield and C. Pagonis. Cambridge: Cambridge University Press.

    Google Scholar 

  • —. 2001. “Pre-Socratic Quantum Gravity.” In Physics Meets Philosophy at the Planck Length, eds. C. Callendar and N. Huggett.

    Google Scholar 

  • Cantor, G. 1895. “Beiträge zur Begründung der transfiniten Mengenlehre.” Mathematische Annalen 46:481–512.

    Article  MATH  Google Scholar 

  • Earman, J. 1989. World Enough and Space-Time. Cambridge: MIT Press.

    Google Scholar 

  • Earman, J., and J. Norton. 1987. “What Price Substantivalism? The Hole Story.” The British Journal for the Philosophy of Science, vol. 38.

    Google Scholar 

  • Ehlers, J. 1973. “Survey of General Relativity Theory.” In Relativity, Astrophysics and Cosmology, ed. W. Israel. Drodrecht: Reidel.

    Google Scholar 

  • Einstein, A. 1921. “Geometrie und Erfahrung.” In Erweiterte Fassung des Festvortrages gehalten an der Preussische Akademie. Berlin: Springer. Translated 1954 by S. Bergmann. Pp. 232–246 in Ideas and Opinions. New York: Crown Publishers.

    Google Scholar 

  • —. 1954. “Relativity and the Problem of Space, Appendix 5.” In Relativity: The Special and General Theory, 15th ed. Methuen.

    Google Scholar 

  • Einstein, A., B. Podolsky, and N. Rosen. 1935. “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?” Physical Review 47:777–780.

    Article  ADS  MATH  Google Scholar 

  • Gödel, K. 1930. “Die Vollständigkeit der Axiome der logischen Funktionenkalküls.” Monatshefte für Mathematik und Physik 37:349–360. Translated as “The Completeness of the Axioms of the Functional Calculus of Logic”. In From Frege to Gödel, ed. J. van Heijenoort. Cambridge, Mass.

    Article  MATH  Google Scholar 

  • Hawking, S., and G. Ellis. 1973. The Large-Scale Structure of Space-Time. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hertz, H. 1894. Die Prinzipien der Mechanik. London. Translated by Jones, D. and T Walley in The Principles of Mechanics.

    Google Scholar 

  • Hestines, D. 1970. “Entropy and Indistinguishability.” American Journal of Physics 38:840–845.

    Article  ADS  Google Scholar 

  • Hilbert, D., and P. Bernays. 1934. Grundlagen der Mathematik, vol. 1. Berlin: Springer.

    Google Scholar 

  • Hoeffer, C. 1996. “The Metaphysics of Space-Time Substantivalism.” The Journal of Philosophy XCIII:5–27.

    Google Scholar 

  • Johnson, W. E. 1924. Logic: Part 3, The Logical Foundations of Science. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Liu, C. 1997. “Realism and Spacetime: Of Arguments Against Metaphysical Realism and Manifold Realism.” Philosophia Naturalis 33:243–263.

    Google Scholar 

  • Maudlin, T. 1988. “The Essence of Space-Time.” Proceedings of the Philosophy of Science Association 2:82–91.

    Google Scholar 

  • Quine, W. V. 1960. Word and Object. Mass.: Harvard University Press.

    MATH  Google Scholar 

  • —. 1976. “Grades of Discriminability.” Journal of Philosophy 73:113–116. [Reprinted in Theories and Things. Cambridge: Harvard University Press, 1981].

    Article  Google Scholar 

  • Renn, J., T. Sauer, M. Janssen, J. Norton, and J. Stachel. 2002. “The Genesis of General Relativity: Sources and Interpretation.” In General Relativity in the Making: Einstein’s Zurich Notebook, vol. 1. Dordrecht: Kluwer.

    Google Scholar 

  • Rovelli, C. 1991. “What is Observable in Classical and Quantum Gravity.” Classical and Quantum Gravity 8:297–304.

    Article  MathSciNet  ADS  Google Scholar 

  • Rynasiewicz, R. 1996a. “Absolute Versus Relational Space-Time: An Outmoded Debate?” Journal of Philosophy XCIII:279–306.

    Article  MathSciNet  Google Scholar 

  • —. 1996b. “Is there a Syntactic Solution to the Hole Argument?” Philosophy of Science 63:55–62.

    Article  MathSciNet  Google Scholar 

  • Saunders, S. 1998. “Hertz’s Principles.” In Heinrich Hertz: Modern Philosopher, Classical Physicist, ed. R. I. G. Hughes. Kluwer.

    Google Scholar 

  • —. 2002a. “Leibniz Equivalence and Incongruent Counterparts.” forthcoming.

    Google Scholar 

  • —. 2002b. “Physics and Leibniz’s Principles.” In Symmetries in Physics: Philosophical Reflections, eds. K. Brading and E. Castellani. Cambridge: Cambridge University Press.

    Google Scholar 

  • Seidelman, P. K., ed. 1992. Explanatory Supplementto the Astronomical Almanac; a revision to the Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. Mill Valley: University Science.

    Google Scholar 

  • Sklar, L. 1974. Space, Time, and Spacetime. Berkeley: University of California Press.

    Google Scholar 

  • Stachel, J. 1983. “Special Relativity from Measuring Rods.” In Physics, Philosophy, and Psychoanalysis: Essays in Honor of Adolf Grünbaum, eds. R. S. Cohen and L. Laudan. Dordrecht: Kluwer.

    Google Scholar 

  • —. 1993. “The Meaning of General Covariance.” In Philosophical Problems of the Internal and Ex ternal Worlds: Essays on the Philosophy of Adolf Grünbaum, eds. J. Earman, A. Janis, G. Massey, and N. Rescher. Pittsburgh: University Press.

    Google Scholar 

  • —. 2001. “‘The Relations Between Things’ Versus ‘The Things Between Relations’: The Deeper Meaning of the Hole Argument.” In Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honour Howard Stein on His 70th Birthday. Open Court: Chicago and LaSalle.

    Google Scholar 

  • Wald, R. 1984. General Relativity. Chicago: Chicago University Press.

    MATH  Google Scholar 

  • Weinberg, S. 1989. “The Cosmological Constant Problem.” Reviews of Modern Physics 61:1–23.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Renn Lindy Divarci Petra Schröter Abhay Ashtekar Robert S. Cohen Don Howard Sahotra Sarkar Abner Shimony

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saunders, S. (2003). Indiscernibles, General Covariance, and Other Symmetries: The Case for Non-Reductive Relationalism. In: Renn, J., et al. Revisiting the Foundations of Relativistic Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0111-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0111-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1285-3

  • Online ISBN: 978-94-010-0111-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics