Time, Structure and Evolution in Cosmology

  • Lee Smolin


The primary task of theoretical physics is to understand why the world is arranged the way we find it, and not otherwise. As such, we invent theories in which we take some aspects of the world and some principles to be fundamental, and try to understand how everything else can be understood in terms of them. As Einstein emphasized, we have a free choice of which elements of reality and which principles we choose to be fundamental, and which secondary (Einstein 1934). Because of this it can and does happen that at certain steps in the development of science we find it convenient or useful to choose very different starting points, from which very different things can be thought of as fundamental.


Black Hole Quantum State Quantum Theory Quantum Gravity Gravitational Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agishtein, and A. A. Migdal. 1992a. Phys. Lett. B 278:42–50.MathSciNetADSCrossRefGoogle Scholar
  2. —. 1992b. “Simulations of 4-Dimensional Simplical Quantum-Gravity as Dynamic Triangulation.” Modern Physics Letters A 7:1039–1061.MathSciNetADSMATHCrossRefGoogle Scholar
  3. Arnowitt, R., S. Deser, and C. W. Misner. 1960. “The Dynamics of General Relativity.” Phys. Rev. 117:1595. [Reprinted 1962 in Gravitation, An Introduction to Current Research, ed. L. Witten. New York: Wiley].MathSciNetADSMATHCrossRefGoogle Scholar
  4. Ashtekar, A. V. 1986. “New Variables for Classical and Quantum Gravity.” Physical Review Letters 57(18):224 2247.MathSciNetADSCrossRefGoogle Scholar
  5. —. 1987. Physical Review D 36:1587.MathSciNetADSCrossRefGoogle Scholar
  6. —. 1991. Non-Perturbative Canonical Gravity. Lecture notes prepared in collaboration with Ranjeet S. Tate. Singapore: World Scientific Books.Google Scholar
  7. Ashtekar, A. V., V. Husain, C. Rovelli, J. Samuel, and L. Smolin. 1989. “2+1 quantum gravity as a toy model for the 3+1 theory.” Class, and Quantum Grav., pp. L185–L193.Google Scholar
  8. Ashtekar, A. V., C. Rovelli, and L. Smolin. 1992. “Weaving a Classical Metric with Quantum Threads.” Physical Review Letters 69(2):237–240.MathSciNetADSMATHCrossRefGoogle Scholar
  9. Barbour, J. B. “Historical background to the problem of inertia.” Unpublished manuscript.Google Scholar
  10. —. 1974. “Relative-distance Machina Theories.” Nature 249:328. [Erratum: Nature 250(5467):606].Google Scholar
  11. —. 1975. Nuovo Centimo 26B:16.Google Scholar
  12. —. 1982. Brit. J. Phil. Sci. 33:251.Google Scholar
  13. —. 1987. “Leibnizian Time, Machian Dynamics and Quantum Gravity.” In Quantum Concepts of Space and Time, eds. C. J. Isham and R. Penrose. Oxford: Oxford University Press.Google Scholar
  14. —. 1989a. Found. Physics 19:1051–1073.Google Scholar
  15. —. 1989b. Absolute or Relative Motion, Vol. 1: The Disco very of Dynamics. Cambridge: Cambridge University Press.Google Scholar
  16. —. 1992a. In Proceedings of the NATO Meeting on the Physical Origins of Time Asymmetry, eds. J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek. Cambridge: Cambridge University Press.Google Scholar
  17. —. 1992b. “Time and the interpretation of quantum gravity.” Syracuse University Preprint.Google Scholar
  18. Barbour, J. B., and B. Bertotti. 1977. Nuovo Centimo 38B:1.ADSCrossRefGoogle Scholar
  19. —. 1982. Proc. Roy Soc. Lond. A 382:295.MathSciNetADSMATHCrossRefGoogle Scholar
  20. —. 1989. Proc. Roy Soc. Lond. A 382:295.MathSciNetADSGoogle Scholar
  21. Barbour, J. B., and L. Smolin. 1992. “Extremal variety as the foundation of a cosmological quantum theory.” Syracuse University Preprint.Google Scholar
  22. Barrow, J., and F. Tipler. 1989. The Anthropic Principle. Oxford: Oxford University Press.Google Scholar
  23. Benton, Nick, personal communication.Google Scholar
  24. Bergmann, P. G. 1956a. Helv. Acta. Suppl. 4:79.Google Scholar
  25. —. 1956b. Nuovo Cimento 3:1177–1185.MathSciNetCrossRefGoogle Scholar
  26. Bombelli, L., J. Lee, D. Meyer, and R. D. Sorkin. 1988. Physics Letters 60:655.MathSciNetCrossRefGoogle Scholar
  27. Broadhurst, R., R. S. Ellis, D. C. Koo, and A. S. Szalay. 1990. “Large-Scale distributions of Galaxies at the Galactic Poles.” Nature 343(6260):726–728.ADSCrossRefGoogle Scholar
  28. Capovilla, R., J. Dell, and T. Jacoboson. 1989. Phys. Rev. Lett. 63:2325.MathSciNetADSCrossRefGoogle Scholar
  29. —. 1991. Class, and Quant. Grav. 8:59.ADSMATHCrossRefGoogle Scholar
  30. Capovilla, R., J. Dell, T. Jacoboson, and L. Mason. 1991. Class, and Quant. Grav. 8:41.ADSMATHCrossRefGoogle Scholar
  31. Carlip, S. 1990. Phys. Rev. D 42:2647.MathSciNetADSCrossRefGoogle Scholar
  32. —. 1992. Phys. Rev. D 45:3584. [UC Davis preprint UCD-92-23].MathSciNetADSCrossRefGoogle Scholar
  33. Carr, B. J. 1977. M.N. R. A. S. 181:293.ADSGoogle Scholar
  34. —. 1981. M.N.R.A.S. 195:669.ADSGoogle Scholar
  35. Carr, B. J., J. R. Bond, and W. D. Arnett. 1984. Ap. J. 227:445.ADSCrossRefGoogle Scholar
  36. Coleman, P., and L. Pietronero. 1992. “The fractal structure of the universe.” Physics Reports 213:311–389.ADSCrossRefGoogle Scholar
  37. Davis, M., and G. Efstathiou. 1988. In Large-Scale Motions in the Universe: A Vatican Study Week, eds. V. C. Rubin and G. V. Coyne. Princeton: Princeton University Press.Google Scholar
  38. Dawkins, R. 1986. The Blind Watchmaker. New York: W. W. Norton.Google Scholar
  39. DeWitt, B. S. 1967. Phys. Rev. 160:1113.ADSMATHCrossRefGoogle Scholar
  40. DeWitt, B. S., E. Myers, R. Harrington, and A. Kapulkin. 1991. Nucl. Phys. B (Proc Supp.) 20:744.ADSCrossRefGoogle Scholar
  41. Dirac, P. A. M. 1959. Phys. Review 114:924–930.MathSciNetADSMATHCrossRefGoogle Scholar
  42. —. 1964. Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York.Google Scholar
  43. Dopita, M. A. 1985. “A law of star formation in disk galaxies: Evidence for self-regulating feedback.” Astrophys. J. 296:L1–L5.CrossRefGoogle Scholar
  44. Einstein, A. 1934. “On the method of theoretical physics.” In A. Einstein: Essays in Science. New York: Philosophical Library.Google Scholar
  45. Elmegreen, B. G. 1992. “Large Scale Dynamics of the Interstellar Medium.” In Interstellar Medium, processes in the galactic diffuse matter, eds. D. Pfenniger and P. Bartholdi. Springer Verlag.Google Scholar
  46. Everett III, H. 1957. Rev. Mod. Phys. 29:454.MathSciNetADSCrossRefGoogle Scholar
  47. —. 1973. In The Many Worlds Interpretation of Quantum Mechanics, eds. B. S. DeWitt and N. Graham. Princeton: Princeton University Press.Google Scholar
  48. Finkelstein, D. 1989. “Quantum Net Dynamics.” International Journal of Theoretical Physics 28:441–467.MathSciNetADSCrossRefGoogle Scholar
  49. —. 1992. “Higher-Order Quantum Logics.” International journal of Theoretical Physics 31:1627–1630.MathSciNetADSMATHCrossRefGoogle Scholar
  50. Franco, J., and D. P. Cox. 1983. “Self-regulated star formation in the galaxy.” Astrophys. J. 273:243–248.ADSCrossRefGoogle Scholar
  51. Franco, J., and S. N. Shore. 1984. “The galaxy as a self-regulated star forming system: The case of the OB associations.” Astrophys. J. 285:813–817.ADSCrossRefGoogle Scholar
  52. Geroch, R. 1984. “The Everett Interpretation + Quantum Mechanics.” Nous 18:617.MathSciNetCrossRefGoogle Scholar
  53. Goldberg, J., J. Lewendowski, and C. Stomaiolo. 1992. “Degeneracy in the loop variables.” Commun. Math. Physics 148:337.ADSCrossRefGoogle Scholar
  54. Hasse, M., M. Kriele, and V. Perlick. 1996. “Caustics of Wavefronts in General Relativity.” Class. Quatum Grav. 13:1161.MathSciNetADSMATHCrossRefGoogle Scholar
  55. Hensler, G., and A. Burkert. 1990. “Self-regulated star formation and evolution of the interstellar medium.” Astrophys. and Space Sciences 171:149–156.ADSCrossRefGoogle Scholar
  56. Hoyle, F. Unpublished.Google Scholar
  57. Ikeuchi, A. Habe, and Y. D. Tanaka. 1984. “The interstellar medium regulated by supernova remnants and bursts of star formation.” MNRAS 207:909–927.ADSGoogle Scholar
  58. Jacobson, T., and J. Romano. 1992. Maryland preprint.Google Scholar
  59. Jacobson, T., and L. Smolin. 1988. Nucl. Phys. B, vol. 299.Google Scholar
  60. Kauffman, L. 1991. Knots and Physics. Singapore: World Scientific.MATHGoogle Scholar
  61. Koestler, A. 1959. The Sleepwalkers. London: Penguin.Google Scholar
  62. Kuchar, K. V. 1992. “Time and interpretations of quantum gravity.” In Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, eds. G. Kunstatter, D. Vincent, and J. Williams. Singapore: World Scientific.Google Scholar
  63. Layzer, D., and R. M. Hively. 1973. Ap. J. 179:361.ADSCrossRefGoogle Scholar
  64. Leibniz, G. W. 1973. “”The Monadology” and “On the principle of indieernibles,” from the Clark-Leibniz Correspondence.” In Leibniz, Philosophical Writings, ed. G. H. R. Parkinson. Translated by M. Morris and G. H. R. Parkinson. London: Dent.Google Scholar
  65. Lovelock, J. 1988. Gala: A New Look at Life on Earth, The Ages of Gaia. New York: W. W. Norton and Co.Google Scholar
  66. Lyndon Bell, D., and R. M. Lyndon Bell. 1977. Mon. Not. R. Astron. Soc. 181:405.ADSGoogle Scholar
  67. Mach, E. 1866. Fichtes Zeitschrift für Philosophie 49:227.Google Scholar
  68. —. 1893. The Science of Mechanics. London: Open Court.MATHGoogle Scholar
  69. Misner, C. W. 1970. “Classical and quantum dynamics of a closed universe.” In Relativity, eds. M. Carmelli, S. I. Fickler, and L. Witten. New York: Plenum.Google Scholar
  70. —. 1972. “Minisuperspace.” In Magic withoiut Magic: John Archibald Wheeler, ed. J. Klauder. San Fransisco: Freeman.Google Scholar
  71. Morowitz, H. 1968. Energy Flow in Biology. Academic Press.Google Scholar
  72. Newman, E. T, and C. Rovelli. 1992. “Generalized Lines of Force as the Gauge-Invariant Degrees of Freedom for General Relativity and Yang-Mills Theory.” Physical Review Letters 69(9): 1300–1303.ADSCrossRefGoogle Scholar
  73. Newton, I. 1962. Mathematical Principles of Natural Philosophy and the System of the World. University of California Press.Google Scholar
  74. Parravano, A. 1988. “Self-regulating star formation in isolated galaxies: thermal instabilities in the interstellar medium.” Astron. Astrophys. 205:71–76.ADSGoogle Scholar
  75. Parravano, A., P. Rosenzweig, and M. Teran. 1990. “Galactic evolution with self-regulated star formation: stability of a simple one-zone model.” Astrophys. J. 356:100–109.ADSCrossRefGoogle Scholar
  76. Peebles, P. J. E. 1911. Physical Cosmology. Princeton: Princeton University Press.Google Scholar
  77. Penrose, R. 1971. In Quantum Theory and Beyond, ed. T. Bastin. Cambridge: Cambridge University Press.Google Scholar
  78. —. 1979a. In Advances in Twistor Theory, eds. L. P. Hughston and R. S. Ward. San Francisco: Pitman.Google Scholar
  79. —. 1979b. “Singularities and Time Asymmetry.” In General Relativity, An Einstein Centanary Survey, eds. S. W. Hawking and W. Israel. Cambridge: Cambridge University Press.Google Scholar
  80. Prigogine, I. 1967. Introduction to the Thermodynamics of Irreversible Processes. New York: Interscience.Google Scholar
  81. —. 1980. From Being to Becoming: time and complexity in the physical sciences. San Fransisco: Freeman.Google Scholar
  82. Rees, M. J. 1972. “Origin of Cosmic Microwave Background Radiation in a Chaotic Universe.” Phys. Rev. Lett. 28:1669.ADSCrossRefGoogle Scholar
  83. —. 1978. Nature 275:35.ADSCrossRefGoogle Scholar
  84. Rovelli, C. 1990. “Quantum Mechanics without Time — A Model.” Phys. Rev. D 42:2638.ADSCrossRefGoogle Scholar
  85. —. 1991a. In Conceptual Problems of Quantum Gravity, eds. A. Ashtekar and J. Stachel. Boston: Birkhauser.Google Scholar
  86. —. 1991b. “Ashtekar Formulation of General Relativity and Loop-Space Nonperturbative Quantum-Gravity — A Report.” Classical and Quantum Gravity 8:1613–1676.MathSciNetADSMATHCrossRefGoogle Scholar
  87. —. 1991c. “Quantum Reference Systems.” Class. Quantum Grav. 8:317–331.MathSciNetADSCrossRefGoogle Scholar
  88. —. 1991d. “Time in Quantum Gravity.” Phys. Rev. D 43:442.MathSciNetADSCrossRefGoogle Scholar
  89. —. 1993. “Statistical mechanics of the gravitational field and the thermodynamic origin or time.” Class. Quantum Grav. 10(8): 1549–1566.MathSciNetADSMATHCrossRefGoogle Scholar
  90. Rovelli, C, and L. Smolin. 1988. “Knots and quantum gravity.” Phys. Rev. Lett. 61:1155.MathSciNetADSCrossRefGoogle Scholar
  91. —. 1990. “Loop representation for quantum General Relativity.” Nucl. Phys. B 133:80.MathSciNetADSCrossRefGoogle Scholar
  92. Rubin, V. C, and G. V. Coyne, eds. 1988. Large-Scale Motions in the Universe: A Vatican Study Week. Princeton: Princeton University Press.Google Scholar
  93. Seiden, P. E., and L. S. Schulman. 1986. “Percolation and galaxies.” Science 233:425–431.ADSCrossRefGoogle Scholar
  94. —. 1990. “Percolation model of galactic structure.” Advances in Physics 39:1–54.MathSciNetADSCrossRefGoogle Scholar
  95. Smolin, L. 1984a. “On quantum gravity and the many worlds interpretation of quantum mechanics.” In Quantum theory of gravity (the DeWitt Feschrift), ed. Steven Christensen. Bristol: Adam Hilger.Google Scholar
  96. —. 1984b. “The thermodynamics of gravitational radiation.” Gen. Rel. and Grav. 16:205.MathSciNetADSCrossRefGoogle Scholar
  97. —. 1985. “On the intrinsic entropy of the gravitational field.” Gen. Rel. and Grav. 17:417.MathSciNetADSCrossRefGoogle Scholar
  98. —. 1989. “Loop representation for quantum gravity in 2+1 dimensions.” In Proceedings of the John’s Hopkins Conference on Knots, Tolopoly and Quantum Field Theory, ed. L. Lusanna. Singapore: World Scientific.Google Scholar
  99. —. 1991. “Space and time in the quantum universe.” In Proceedings of the Osgood Hill conference on Conceptual Problems in Quantum Gravity, eds. A. Ashtekar and J. Stachel. Boston: Birkhauser.Google Scholar
  100. —. 1992a. “Did the Universe evolve?” Classical and Quantum Gravity 9:173–191.MathSciNetADSCrossRefGoogle Scholar
  101. —. 1992b. “Recent developments in nonperturbative quantum gravity.” In The Proceedings of the 1991 GIFT International Seminar on Theoretical Physics: “Quantum Gravity and Cosmology”. held in Saint Feliu de Guixols, Catalonia, Spain: Singapore: World Scientific.Google Scholar
  102. —. 1997. The Life of the Cosmos. Oxford University Press and Weidenfeld and Nicolson.Google Scholar
  103. Spivak, M. 1970. A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish Press.Google Scholar
  104. Stachel, J. 1989. “Einstein’s search for general covariance 1912–1915.” In Einstein and the History of General Relavity, vol. 1 of Einstein Studies, eds. D. Howard and J. Stachel. Boston: Birkhauser.Google Scholar
  105. Teresawa, N., and K. Sato. 1985. Ap. J. 294:9.ADSCrossRefGoogle Scholar
  106. Wald, R. S. 1984. General Relativity. University of Chicago Press.Google Scholar
  107. Wheeler, J. A. personal communication.Google Scholar
  108. —. 1957. “Assessment of Everett’s Relative State Formulation of Quantum Theory.” Rev. Mod. Phys. 29:463.Google Scholar
  109. Witten, E. 1988. Nucl. Phys. B 311:46.MathSciNetADSMATHCrossRefGoogle Scholar
  110. Wyse, R. F. G., and J. Silk. 1985. “Evidence for supernova regulation of metal inrichment in disk galaxies.” Astrophys. J. 296:11–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Lee Smolin
    • 1
  1. 1.Pennsylvania State UniversityUSA

Personalised recommendations