Skip to main content

Molecules in Motion: Towards Hydrogen Bond-Assembled Molecular Machines

  • Chapter
Book cover Organic Nanophotonics

Part of the book series: NATO Science Series ((NAII,volume 100))

  • 398 Accesses

Abstract

Many phenomena of biological interest originate directly from mechanical motions at the molecular level. Celebrated examples include the trans-cis isomerisation of double bonds that triggers the visual signal and the rotary motion of the enzyme F1-ATPase, the cornerstone of ADP to ATP conversion. This dependence on molecular level motion in key natural processes is inspiring scientists to try and bridge the gap between synthetic chemistry, which by and large relies upon electronic and chemical effects and does not exploit molecular motions, and the macroscopic world, where our everyday machines rely upon the synchronized motions of their components to perform their designated tasks. Accordingly, there is great current interest in trying to make molecular analogues of some of the fundamental components of machinery from the macroscopic world (cogs, wheels, shuttles, pistons etc) [1]. The idea is that such structures could form the basis of synthetic devices or materials that, like biological systems, could function through molecular level mechanical motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, Ace. Chem. Res. Special Issue on “Molecular Machines” 2001, 34(6), 409–522; V. Balzani, A. Credi, F.M. Raymo, J.F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348–3391.

    Article  Google Scholar 

  2. N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Nature, 1999, 401, 152–155.

    Article  ADS  Google Scholar 

  3. T.R. Kelly, H. De Silva, R.A. Silva, Nature, 1999, 401,150–152.

    Article  ADS  Google Scholar 

  4. V. Balzani, M. Gomez-Lopez, J.F. Stoddart, Ace. Chem. Res. 1998, 31, 405–414.

    Article  Google Scholar 

  5. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverley, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath, Science, 2000, 289,1172–1175.

    Article  ADS  Google Scholar 

  6. J.P. Sauvage, Ace. Chem. Res. 1998, 31,611–619.

    Article  Google Scholar 

  7. A.S. Lane, D.A. Leigh, A. Murphy, J. Am. Chem. Soc. 1997, 119, 11092–11093.

    Article  Google Scholar 

  8. V. Bermudez, N. Capron, T. Gase, F.G. Gatti, F. Kajzar, D.A. Leigh, F. Zerbetto, S. Zhang, Nature, 2000, 406, 608–611.

    Article  ADS  Google Scholar 

  9. F. Vogtle, S. Gestermann, C. Kauffmann, P. Ceroni, V. Vicinelli, L. De Cola, V. Balzani, J Am Chem Soc 121, 12161–12166(1999)

    Article  Google Scholar 

  10. M.C. Jimenez, C. Dietrich-Buchecker, J.P. Sauvage, Angew. Chem. Int. Ed. 2000, 39, 3284–3287

    Article  Google Scholar 

  11. R.A. Bissell, E. Cordova, A.E. Kaifer, J.F. Stoddart, M.S. Tolley, Nature, 1994, 369, 133–137.

    Article  ADS  Google Scholar 

  12. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath, Science 2000, 289,1172–1175.

    Article  ADS  Google Scholar 

  13. A.G. Johnston, D.A. Leigh, R.J. Pritchard, M.D. Deegan, Angew. Chem., Int. Edn. Engl. 1995, 34, 1209–1212;

    Article  Google Scholar 

  14. For a remarkable related catenane system where the rings cannot rotate see F. Vögtle, T. Dünnwald, T. Schmidt, Ace. Chem. Res. 1996, 29,451–460.

    Article  Google Scholar 

  15. A. G. Johnston, D. A. Leigh, L. Nezhat, J. P. Smart and M. D. Deegan, Angew Chem, Int Ed Engl, 34, 1212–1216(1995).

    Article  Google Scholar 

  16. M. Fanti, C.-A. Fustin, D. A. Leigh, A. Murphy, P. Rudolf, R. Caudano, R. Zamboni and F. Zerbetto, J Phys Chem A, 102, 5782–5788 (1998).

    Article  Google Scholar 

  17. A. M. Brouwer, W. J. Buma, R. Caudano, M. Fanti, C. A. Fustin, D. A. Leigh, A. Murphy, P. Rudolf, F. Zerbetto and J. M. Zwier, Chem Phys 238, 421–428 (1998).

    Article  Google Scholar 

  18. F. Biscarini, W. Gebauer, D. DiDomenico, R. Zamboni, J. I. Pascual, D. A. Leigh, A. Murphy and D. Têtard Synthetic Metals 102, 1466–1467 (1999).

    Article  Google Scholar 

  19. C.-A. Fustin, D. A. Leigh, P. Rudolf, D. Timpel, F. Zerbetto ChemPhysChem, 97–100 (2000).

    Google Scholar 

  20. R. Caciuffo, A. Degli Esposti, M. S. Deleuze, D. A. Leigh, A. Murphy, B. Paci, S. F. Parker and F. Zerbetto, J Chem Phys, 109, 11094–11100 (1998).

    Article  ADS  Google Scholar 

  21. D. A. Leigh, S. F. Parker, D. Timpel and F. Zerbetto, J. Chem. Phys., 114, 5006–5011 (2001)

    Article  ADS  Google Scholar 

  22. F. Biscarini, M. Cavallini, D. A. Leigh, S. Leôn, S. J. Teat, J. K. Y. Wong, F. Zerbetto, J. Am. Chem. Soc, 124, 225–233 (2002).

    Article  Google Scholar 

  23. P. Ceroni, D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia, D. Têtard and F. Zerbetto, J Phys Chem 5, 103,10171–10179(1999).

    Google Scholar 

  24. D. A. Leigh, A. Murphy, J. P. Smart, M. S. Deleuze and F. Zerbetto, J Am Chem Soc, 120, 6458–6467(1998).

    Article  Google Scholar 

  25. C. A. Fustin, P. Rudolf, A. F. Taminiaux, F. Zerbetto, D. A. Leigh and R. Caudano, Thin Solid Films, 329, 321–325 (1998).

    Article  ADS  Google Scholar 

  26. F. Biscarini, W. Gebauer, D. DiDomenico, R. Zamboni, J. I. Pascual, D. A. Leigh, A. Murphy and D. Têtard Synthetic Metals 102, 1466–1467 (1999).

    Article  Google Scholar 

  27. C. De Nadai, C. M. Whelan, C. Perollier, G. Clarkson, D. A. Leigh, R. Caudano, P. Rudolf, Surf Sci, 454–456, 112–117(2000).

    Article  Google Scholar 

  28. C. M. Whelan, F. Cecchet, G. J. Clarkson, D. A. Leigh, R. Caudano and P. Rudolf, Surf Sei, 474, 71–80(2001)

    Article  ADS  Google Scholar 

  29. C-A. Fustin, R. Gouttebaron, C. De Nadaï, R. Caudano, P. Rudolf, F. Zerbetto and D A. Leigh, Surf Sci, 474, 37–40 (2001)

    Article  ADS  Google Scholar 

  30. T. Gase, D. Grando, P A. Chollet, F. Kajzar, A. Lorin, D. Têtard and D A. Leigh, Photonics Sci News, 3, 16–21(1998).

    Google Scholar 

  31. T. Gase, D. Grando, P-A. Chollet, F. Kajzar, A. Murphy and D A. Leigh, Adv Mater 11, 1303–1306 (1999).

    Article  Google Scholar 

  32. D. Grando, T. Gase, F. Kajzar, M. Fanti, F. Zerbetto, A. Murphy, D A. Leigh Mol Cry s. Liq. Crys. 353, 545–559 (2000).

    Article  Google Scholar 

  33. M. Asakawa, G. Brancato, M. Fanti, D A. Leigh, T. Shimizu, A M Z. Slawin, J K Y. Wong, F. Zerbetto, and S. Zhang, J. Am. Chem. Soc, 124, 2939–2950 (2002).

    Article  Google Scholar 

  34. M S. Deleuze, D A. Leigh and F. Zerbetto, J Am Chem Soc, 121, 2364–2379 (1999).

    Article  Google Scholar 

  35. D A. Leigh, A. Troisi and F. Zerbetto, Angew Chem Int Ed, 39, 350–353 (2000).

    Article  Google Scholar 

  36. D A. Leigh, A. Troisi and F. Zerbetto, Chem. Eur. J., 7, 1450–1454 (2001)

    Article  Google Scholar 

  37. D A. Leigh, K. Moody, J P. Smart, K J. Watson and A M Z. Slawin, Angew Chem, Int Ed Engl, 35, 306–310(1996)

    Article  Google Scholar 

  38. T J. Kidd, D A. Leigh and A J. Wilson, J Am Chem Soc, 121, 1599–1600 (1999)

    Article  Google Scholar 

  39. A G. Johnston, D A. Leigh, A. Murphy, J P. Smart and M D. Deegan J Am Chem Soc 118, 10662–10663 (1996).

    Article  Google Scholar 

  40. D A. Leigh, A. Murphy, J P. Smart and A M Z. Slawin, Angew Chem, Int Ed Engl, 36, 728–732 (1997).

    Article  Google Scholar 

  41. W. Clegg, C. Gimenez-Saiz, D A. Leigh, A. Murphy, A M Z. Slawin and S J. Teat, J Am Chem Soc, 121, 4124–4129(1999).

    Article  Google Scholar 

  42. F G Gatti, D A. Leigh, S A. Nepogodiev, A M Z. Slawin, S., J. Teat and J K Y. Wong, J Am Chem Soc, 123, 5983–5989 (2001).

    Article  Google Scholar 

  43. A.S. Lane, D.A. Leigh, A. Murphy, J. Am. Chem. Soc. 1997, 119,11092–11093.

    Article  Google Scholar 

  44. A.M. Brouwer, C. Frochot, F.G. Gatti, D.A. Leigh, L. Mottier, F. Paolucci, S. Roffia and G.W.H. Wurpel, Science 291, 2124–2128 (2001).

    Article  ADS  Google Scholar 

  45. G W H. Wurpel, A M. Brouwer, I H M. van Stokkum, A. Farran and D A. Leigh J. Am. Chem. Soc, 123,11327–11328(2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leigh, D.A. (2003). Molecules in Motion: Towards Hydrogen Bond-Assembled Molecular Machines. In: Charra, F., Agranovich, V.M., Kajzar, F. (eds) Organic Nanophotonics. NATO Science Series, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0103-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0103-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1280-8

  • Online ISBN: 978-94-010-0103-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics