Fluorescent Photochromic Diarylethene Oligomers

  • H. Cho
  • E. Kim
Part of the NATO Science Series book series (NAII, volume 100)


Fluorescent photochromic materials collect strong interest for their capability of controlling fluorescence by photochromic conversion of materials. In particular fluorescent diarylethenes, which shows reversible change in fluorescence intensity with photochromic reaction, are useful for light probe and non-destructive optical readout system.1 Since diarylethene molecules do not show strong fluorescence (fluorescence quantum yields lower than 3 %), they have been modified by substituting a fluorescent chromophore such as anthracene, 2,4,5-triphenylimidazole, diphopyrines, or tungstene complex.2–4


Fluorescence Quantum Yield Chloroform Solution Characteristic Absorption Maximum Fluorescent Chromophore Triphenylphosphonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    Irie, M. and Sayo, K. (1992) Solvent effects on the photochromic reactions of diarylethene derivatives Journal of Physical Chemistry 96, 7671.CrossRefGoogle Scholar
  2. 2.(a)
    Tsivgoulius, G. M. and Lehn, J.-M. (1996) Photoswitched and functionalized oligothiophenes: synthesis and photochemical and electrochemical properties J. Chem. Eur. 2, 1399.CrossRefGoogle Scholar
  3. 2.(b)
    Takeshita, M. and Irie, M. (1998) Reversible fluorescence intensity change of a diarylethene Chem. Lett. 1123.Google Scholar
  4. 3.
    Em, J., Benz, A. T., Martin, H.-D., Mukamel, S., Tretiak, S., Tsyganenko, K., Kuldova, K., Trommsdorff, H. P. and Kryschi, C. (2001) Reaction dynamics of a photochromic fluorescing dithienylethene J. Phys. Chem. A, 105, 1741.CrossRefGoogle Scholar
  5. 4.
    Yagi, K., Soong, C. F. and Irie, M. (2001) Synthesis of fluorescent diarylethenes having a 2, 4, 5-triphenylimidazole chromophore J. Org. Chem. 66, 5419.CrossRefGoogle Scholar
  6. 5.
    Kawai, T., Sasaki, T. and Irie, M. (2001) A photoresponsive laser dye containing photochromic dithienylethene units Chem. Comm. 711.Google Scholar
  7. 6.(a)
    Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., MacKay, K., Friend, R. H., Bum, P. L. and Holmes, A. B.(1990) Light-emitting diodes based on conjugated polymers Nature 347, 539.ADSCrossRefGoogle Scholar
  8. 6.(b)
    Hsieh, B. R., Yu, Y., Forsythe, E. W., Schaaf, G. M. and Feld, W. A. (1998) A New Family of Highly Emissive Soluble Poly(p-phenylene vinylene) Derivatives. A Step toward Fully Conjugated Blue-Emitting Poly(p-phenylene vinylenes) J. Am. Chem. Soc. 120(1) 231.CrossRefGoogle Scholar
  9. 7.
    Irie, M.; Miyatake, O.; Uchita, K. and Eriguchi, T. (1994) Photochromic Diarylethenes with Intralocking Arms J. Am. Chem. Soc, 9894Google Scholar
  10. 8.
    Cho H., Cho S. Y., Kim Y., Jeon D. and Kim E. (2002) Fluorescence property of photochromic diarylethene derivatives , J. Korean Society for Imaging Science, in press.Google Scholar
  11. 9.
    Cho S. Y., Yoo M., Shin H.-W., Ahn K.-H. , Kim Y.-R., and Kim E. (2002) Preparation of Diarylethene Copolymers and Their Photo-induced Refractive Index Change Organic Materials, in press.Google Scholar
  12. 10.
    Kim M.-S., Kawai T. and Irie M. (2000) Synthesis and photochromism of amorphous diarylethene having stynyl substituents, Mol. Cryst. And Liq. Cryst. 345, 251.CrossRefGoogle Scholar
  13. 11.
    Wang S., Xiao S., Li Y., Shi Z., Du C., Fang H. and Zhu D. (2002) Synthesis and characterization of new C60-PPV dyads containing carbazold moiety, Polymer 43, 2049.CrossRefGoogle Scholar
  14. 12.(a)
    Demas J. N. and Crosby G. A Measurement of photoluminescence quantum yields. Review (1971) J. Phys. Chem 75, 991Google Scholar
  15. 12.(b)
    Ng S. C., Ma Y. F., Chan H. S. O and Dou Z. L. (1999) Syntheses and characterization of electrically conductive and fluorescent poly[3-(-bromoalkyl)thiophenes] Synth. Metals 100, 269CrossRefGoogle Scholar
  16. 13.
    Mejiritski, A., Polykarpov, A. Y., Sarker, A. M. and D. C. Neckkers (1997) Determined from the changes of absorption due to ring-cyclization reactions according to, J. Photochem. Photobiol 108, 289.CrossRefGoogle Scholar
  17. 14.
    Kaieda, T., Kobatake Miyasaka, S., Murakami, H. M., Iwai, N., Nagata, Y., Itaya, A. and Irie, M. (2002) Efficient Photocyclization of Dithienylethene Dimer, Trimer, and Tetramer: Quantum Yield and Reaction Dynamics J. Am. Chem. Soc. 124, 2015.CrossRefGoogle Scholar
  18. 15.
    Fernandez-Acebes, A. and Lehn, J. (1998) Optical switching and fluorescence modulation in photochromic metal complexes M. Adv. Matr. 10, 1519.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • H. Cho
    • 1
  • E. Kim
    • 1
  1. 1.Advanced Materials Division Lab 7Korea Research Institute of Chemical TechnologyYusong, DaejeonSouth Korea

Personalised recommendations