Sub-Microscopic Probing of Intrinsic and Extrinsic Enhancement of Second Harmonic Generation of Nano-Structured Gold Surfaces

  • S. Brasselet
  • C. Anceau
  • P. Gadenne
  • J. Zyss
Part of the NATO Science Series book series (NAII, volume 100)


This paper describes the local enhancement of quadratic nonlinear optical properties of granular gold nano-structures and their effect on nonlinear molecules deposited on them. A two-photon excitation microscope has been employed in order to detect second harmonic generation with a sub-microscopic resolution. Surface-SHG from the gold granular structures exhibits intense signals in sub-micrometer sized regions randomly localized on the surface. The spatial distribution and polarization state of these signals provides significant information on the underlying physics of the local enhancement effect. We show furthermore that the signal from nonlinear chromophores deposited on these substrates is strongly enhanced with factors up to 2×103, before decaying within a few seconds. Quantitative measurements indicate a significant local electromagnetic contribution to the molecular enhancement. Molecular damage and possible metal-molecule interactions are analyzed in order to explain the magnitude and the fast decay of this effect.


Surface Enhance Raman Scattering Enhancement Factor Harmonic Generation Gold Surface Incident Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oldenburg, S.J., Averitt, R.D., Westcott, S.L. and Halas, N.J. (1998) Nanoengineering of optical resonances, Chem. Phys. Lett. 288, 243–7.ADSCrossRefGoogle Scholar
  2. 2.
    Doremus, R.H. (1964) Optical properties of small gold nanoparticles, Journ. Chem. Phys. 40, 2389–96.ADSCrossRefGoogle Scholar
  3. 3.
    Kreibig, U. and Vollmer, M. (1995). Optical Properties of Metal Clusters Springer VerlagCrossRefGoogle Scholar
  4. 4.
    Chang, R.K. and Furtark, T.E. (1982). Surface Enhanced Raman Scattering, New York Plenum PressCrossRefGoogle Scholar
  5. 5.
    Golab, J.T., Sprague, J.R., Carron, K.T., Schatz, G.C. and Van Duyne, R.P. (1988) A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: Experiment and theory, J. Chem. Phys. 88, 7942.ADSCrossRefGoogle Scholar
  6. 6.
    Andrews, M., Kusyk, M.G. and Ghebremichael, F. (1993) Local field enhancement of the cubic optical nonlinearity in fractal silver nanosphere/poly(methylmetacrylate) composite, Nonlinear Optics 6, 103–12.Google Scholar
  7. 7.
    Zhang, J., Zhao, J., He, H., Zhang, H., Li, H. and Liu, Z. (1998) Studies on the surface enhanced infrared spectroscopy of Langmuir-Blodgett monolayers of azobenzene carboxylic acid on silver island films, Langmuir 14, 5521–5.CrossRefGoogle Scholar
  8. 8.
    Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R. and Feld, M.S. (1997) Single Molecule Detection using Surface-Enhanced Raman Scattering, Phys. Rev. Lett. 78, 1667.ADSCrossRefGoogle Scholar
  9. 9.
    Nie, S. and Emory, S. (1997) Science 275, 110–1106.CrossRefGoogle Scholar
  10. 10.
    Delvin, J.P. and Consani, K. (1981) J. Phys. Chem. 85, 2597.CrossRefGoogle Scholar
  11. 11.
    Maxwell, D.J., Emory, S. and Nie, S. (2001) Nanostructured thin-film materials with surface-enhanced optical properties, Chem. Mater. 13, 1082–8.CrossRefGoogle Scholar
  12. 12.
    Shalaev, V.M. and Sarychev, A.K. (1998) Nonlinear optics of random metal-dielectric films, Physical Review B 57, 13265–88.ADSCrossRefGoogle Scholar
  13. 13.
    Grésillon, S., Aigouy, L., Boccara, A.C., Rivoal, J.C., Quélin, X., Desmarest, C., Gadenne, P., Shubin, V.A., Sarychev, A.K. and Shalaev, V.M. (1999) Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films, Phys. Rev. Lett. 82, 4520–3.ADSCrossRefGoogle Scholar
  14. 14.
    Guyot-Sionnest, P., Chen, W. and Shen, Y.R. (1986) General considerations on optical second-harmonic from surfaces and interfaces, Phys. Rev. B. 33, 8254–63.ADSCrossRefGoogle Scholar
  15. 15.
    Bloembergen, N., Chang, R.K., Jha, S.S. and Lee, C.H. (1968) Optical second-harmonic generation in reflection from media with inversion symmetry, Phys. Rev. 174, 813.ADSCrossRefGoogle Scholar
  16. 16.
    Chang, C.S. and Lue, J.T. (1997) Optical second harmonic generation from thin silver films, Surface Science 393, 232–9.ADSCrossRefGoogle Scholar
  17. 17.
    Pluchery, O., Zheng, W.Q., Marin, T. and Tadjeddine, A. (1999) Study of the absorption of 4-cyanopyridine on Au(lll) using sum frequency generation nonlinear spectroscopy, Physica Status Solidi A 175, 145–51.ADSCrossRefGoogle Scholar
  18. 18.
    Aktsipetrov, O.A., Keller, O., Pedersen, K., Nikulin, A.A., Novikova, N.N. and Fedyanin, A.A. (1993) Surface-enhanced second harmonic generation in C60-coated silver island films, Phys. Lett. A 179, 149–53.ADSCrossRefGoogle Scholar
  19. 19.
    Manaka, T. and Manaka, I. (2001) Enhancement of second harmonic generation from phtalocyanine Langmuir-Blodgett films on metal electrodes, Thin Solid Films 393, 119–23.ADSCrossRefGoogle Scholar
  20. 20.
    Jha, S.S. (1965) Phys. Rev. A 140, 2020.ADSGoogle Scholar
  21. 21.
    Rudnick, J. and Stern, E.A. (1971) Second-harmonic radiation from metal surfaces, Phys. Rev. B 4, 4274–90.ADSCrossRefGoogle Scholar
  22. 22.
    Weber, M. and Liebsch, A. (1987) Density-functional theory appraoch to second-harmonic generation at metal surfaces, Phys. Rev. B 35, 7411–6.ADSCrossRefGoogle Scholar
  23. 23.
    Boyd, G.T., Rasing, T., Leite, J.R.R. and Shen, Y.R. (1984) Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation, Phys. Rev. B. 30, 519–26.ADSCrossRefGoogle Scholar
  24. 24.
    Van Driel, H.M. (1994) Second-harmonic generation from metal surfaces: beyond jellium, Appl. Phys. A 59, 545–52.ADSCrossRefGoogle Scholar
  25. 25.
    Chen, C.K., Castro, A.R.B. and Shen, Y.R. (1981) Surface-Enhanced Second-Harmonic Generation, Phys. Rev. Lett. 46, 145–8.ADSCrossRefGoogle Scholar
  26. 26.
    Poliakov, E.Y., Markel, V.A., Shalaev, V.M. and Botet, R. (1998) Nonlinear optical phenomena on rough surfaces of metal thin films, Phys. Rev. B 57, 14901–13.ADSCrossRefGoogle Scholar
  27. 27.
    Podolskiy, V.A., Sarychev, A.K. and Shalaev, V.M. (2002) Temporal Dynamics of Local Optical Responses and Sub-fs Pulse Generation in Semicontinuous Metal Films, Laser Physics 12, 292–9.Google Scholar
  28. 28.
    Zayats, A.V., Smolyaninov, I.I. and Davis, C.C. (1999) Observation of localized plasmonic excitations in thin metal films with near-field second harmonic microscopy, Opt. Comm. 169, 93–6.ADSCrossRefGoogle Scholar
  29. 29.
    Breit, M., Podolsky, V.A., Grésillon, S., Von Plessen, G., Feldmann, J., Rivoal, J.C., Gadenne, P., Sarychev, A.K. and Shalaev, V.M. (2001) Experimental observation of percolation-enhanced non-linear scattering from semi-continuous gold films, Phys. Rev. B. 64, 106.CrossRefGoogle Scholar
  30. 30.
    Ducourtieux, S., Grésillon, S., Boccara, A.C., Rivoal, J.C., Quélin, X., Gadenne, P., Drachev, V.P., Bragg, W.D., Safonov, V.P., Podolskiy, V.A., Ying, Z.C., Armstrong, R.L. and Shalaev, V.M. (2000) Percolation and Fractal composites: Optical Studies, Jour.Nonlinear Opt. Phys. Mat. 9, 105.ADSGoogle Scholar
  31. 31.
    Anceau, C., Brasselet, S., Gadenne, P. and Zyss, J. (2002) Local second harmonic generation enhancement on gold nanostructures probed by 2-photon microscopy, submitted Google Scholar
  32. 32.
    Safonov, V.P., Shalaev, V.M., Markel, V.A., Danilova, Y.E., Lepeshkin, N.N., Kim, W., Rautan, S.G. and Armstrong, R.L. (1998) Spectral dependance of selective photomodification in fractal aggregates of colloidal particules, Phys. Rev. Lett. 80, 1102–5.ADSCrossRefGoogle Scholar
  33. 33.
    Stockman, M.I. (2000) Giant attosecond fluctuations of local optical fields in disordered nanostructured media, Phys. Rev. B 62, 10494–7.ADSCrossRefGoogle Scholar
  34. 34.
    Ducourtieux, S., Podolskiy, V.A., Grésillon, S., Buil, S., Bérini, B. and Gadenne, P. (2001) Near-field optical studies of semi-continuous metal films, Phys. Rev. B 64, 1554.CrossRefGoogle Scholar
  35. 35.
    Shen, Y.R. (1994) Nonlinear optical studies of surfaces, Appl. Physics A 59, 541–3.ADSCrossRefGoogle Scholar
  36. 36.
    Aroca, R.F. and Constantino, C.J.L. (2000) Surface-enhanced Raman scattering: imaging and mapping of Langmuir-Blodgett monolayers physically adsorbed onto siver island films, Langmuir 16, 5425–9.CrossRefGoogle Scholar
  37. 37.
    Simpson, G.J. and Rowlen, K.L. (2000) Measurement of Orientation in Organic Thin Films, Acc. Chem. Res. 33, 781–9.CrossRefGoogle Scholar
  38. 38.
    Zhang, Z.J., Verma, A.L., Tamai, N., Nakashima, K., Yoneyama, M., Iriyama, K. and Ozaki, Y. (1998) Excitation energy transfer in Langmuir-Blodgett films of 5-(4-N-octadecylpyridyl)-10, 15, 20-tri-tolyporphyrin on gold-evaporated surfaces studied by time-resolved fluorescence spectroscopy, Thin Solid Films 333, 1–4.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • S. Brasselet
    • 1
  • C. Anceau
    • 1
    • 2
  • P. Gadenne
    • 2
  • J. Zyss
    • 1
  1. 1.Laboratoire de Photonique Quantique et MoléculaireEcole Normale Supérieure de CachanCachanFrance
  2. 2.Laboratoire de Magnétisme et d’Optique de VersaillesUniversité de Versailles Saint-Quentin en YvelinesVersailles CedexFrance

Personalised recommendations