Skip to main content

Non-Compression Refrigeration: Problems and Prospects

  • Chapter
Book cover Low Temperature and Cryogenic Refrigeration

Part of the book series: NATO Science Series ((NAII,volume 99))

  • 1137 Accesses

Abstract

Modern tendencies of energy saving and environmentally friendly technologies direct scientists and engineers into exploration of any reliable opportunity in application of renewable or partly renewable energy sources for power generation. Recent experience shows that because of low availability of renewable energy, this approach could be realized in the most effective manner for refrigeration and heat pumping techniques. Thermodynamically renewable energy-based cycles do not contain a mechanical compression process. Hence, both mechanical compression and non-mechanical compression refrigeration cycles accomplish the removal of heat through the evaporation of a refrigerant at a low pressure and the rejection of heat through the condensation of the refrigerant at a higher pressure, the method of creation of the pressure difference and circulation of the refrigerant is the primary distinction. The vapour compression cycle employs a mechanical compressor to create the pressure differences necessary to circulate the refrigerant. In the non-mechanical compression system forces of non-mechanical nature drive the heat transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G. (1980) Einstein as inventor, Physics Today, May 1980, 9–13.

    Google Scholar 

  2. Alefeld, G., and Radermacher, R. (1994) Heat Conversion Systems, CRC Press, Inc., Boca Raton.

    Google Scholar 

  3. ASHRAE (1989) Handbook, Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

    Google Scholar 

  4. Bejan, A. (1997) Advanced Engineering Thermodynamics, 2nd ed., Wiley, New York.

    Google Scholar 

  5. Black, W.Z., and J.G. Hartley (1991) Thermodynamics, 2nd ed., Harper Collins, New York.

    Google Scholar 

  6. Bougard, J., Afgan, N. H. (1987) Heat and Mass Transfer in Refrigeration and Cryogenics, Springer-Verlag.

    Google Scholar 

  7. Buz, V. (2001) Absorption-diffusion refrigerators. Modelling and analysis, in B. Kosoy (ed.), Proceedings of the 2nd International Workshop on Non-Compression Refrigeration and Cooling, Odessa, pp. 15–20.

    Google Scholar 

  8. Chisholm, D. (1983) Two-Phase Flow in Pipelines and Heat Exchangers, George Goodwin, New York.

    Google Scholar 

  9. Christen, J. E. (1977) Central Cooling-Absorptive Chillers, Oak Ridge National Laboratory, Oak Ridge TN.

    Google Scholar 

  10. Chu, R.C., and Simons, R.E. (1994) Cooling technology for high performance computers: design applications,” in S. Kakac, H. Yuncu, and K. Hijikata (eds.), Cooling of Electronic Systems, Kluwer Academic Publishers, Dordrecht, 71–95.

    Chapter  Google Scholar 

  11. Dannen, G. (1997) The Einstein-Szilard refrigerators, Scientific American, January 1997, 90–95.

    Google Scholar 

  12. Dorgan, C.B., Leight, S.E. and Dorgan, C.E. (1995) Application guide for absorption cooling/refrigeration using recovered heat, ASHRAE, Atlanta.

    Google Scholar 

  13. Dossat, T.J. (1981) Principles of Refrigeration, 2nd edition, Wiley, New York.

    Google Scholar 

  14. Dresselhaus, M.S., Koga, T., Sun, X., Cronin, S.B., Wang, K.L., and Chen, G. (1997) Low dimensional thermoelectrics, Proceedings of the 16th International Conference on Thermoelectrics, pp. 12–20.

    Google Scholar 

  15. Einstein, A., and L. Szilard (1930) Refrigeration, (Appl: 16 Dec. 1927; Priority: Germany, 16 Dec. 1926) Pat. No. 1,781,541 (United States), 11 Nov. 1930.

    Google Scholar 

  16. Filin, S. (2001) Effective methods of cold productivity regulation of thermoelectric refrigerators, in B. Kosoy (ed.), Proceedings of the 2nd International Workshop on Non-Compression Refrigeration and Cooling, Odessa, pp. 21–27.

    Google Scholar 

  17. Fleurial, J-P., Borshchevsky, A., Caillat, T., and Ewell, R. (1997) New materials and devices for thermoelectric applications, IECEC, ACS Paper No. 97419, pp. 1080–1085.

    Google Scholar 

  18. Follin, J.W., and K. Yu (1980) Energy Conversion and Storage Techniques: Evaluating the Einstein Refrigerator, Johns Hopkins Applied Physics Laboratory, July-September and October-December.

    Google Scholar 

  19. Godfrey, S. (1996) An introduction to thermoelectric coolers, Electronics Cooling, Vol. 2, 3, 30–33.

    Google Scholar 

  20. Goldsmid, H. J. (1986) Electronic refrigeration, Pion, London.

    Google Scholar 

  21. Gosney, W.B. (1982) Principles of Refrigeration, Cambridge Univ. Press, 1982.

    Google Scholar 

  22. Griffith, P. and G.B. Wallis (1961) Two-phase slug flow, Transactions of the ASME Journal of Heat Transfer, Vol. 83, 3, 307–320.

    Article  Google Scholar 

  23. Gschneidner, K., Pecharsky, V. and C. Zimm (1997) New materials for magnetic refrigeration promise cost effective, environmentally sound air conditioners, refrigerators/freezers, and gas li-quefiers, Material Technology, p. 143.

    Google Scholar 

  24. Hainsworth, W. R. (1944) Refrigerants and absorbents: Part 1, Refrigerating Engineering, Vol. 48, Aug. 1944, 97–100.

    Google Scholar 

  25. Hainsworth, W. R., (1944) Refrigerants and absorbents: Part II, Refrigerating Engineering, Vol. 48, Sep. 1944, 201–205.

    Google Scholar 

  26. Herold, K.E., Radermacher, R. and S. Klein (1996) Absorption Chillers and Heat Pumps, CRC Press, New York.

    Google Scholar 

  27. Huang, B.J. (2001) Feasibility of thermoelectric device for CPU cooling, in B. Kosoy (ed.), Proceedings of the 2nd International Workshop on Non-Compression Refrigeration and Cooling, Odessa, pp. 28–31.

    Google Scholar 

  28. Huang, B.J., Chin, C.J. and Duang, C.L. (2000) A design method of thermoelectric cooler, Int. J. of Refrigeration, 23, 208–218.

    Article  Google Scholar 

  29. Kim, K., Chen, J., Shi, Z., Herold, K. (1993) Diffusion Absorption Heat Pump, Annual Report to the Gas Research Institute, Nov. 1992-Oct. 1993.

    Google Scholar 

  30. Lucas, P. (1967) A boiler for absorption units of the inert gas type having a wide range of input power, XIIth Int. Congr. of Refrig., Vol. 2, 3, 1353–1359.

    Google Scholar 

  31. Mahan G. D. (1989) Figure of merit for thermoelectrics, Journal of Applied Physics, vol. 65, 1578–1583.

    Article  ADS  Google Scholar 

  32. Nolas, G.S., Slack, G.A., Cohn, J.L., and Schujman, S.B. (1998) The next generation of thermoelectric materials, Proceedings of the 17th International Conference on Thermoelectrics, pp. 294–297.

    Google Scholar 

  33. Ottenweller, J.H., Holloway, C., Weinrich, W. (1943) Liquid-vapour equilibrium compositions in hydrogen-chloride-n-butane system, Industrial and Engineering Chemistry, Vol. 35(2), 207–209.

    Article  Google Scholar 

  34. Palmer, S.A. (1994) Dual Pressure Absorption Cycles: The Second Law and Working Fluids, Ph.D. Thesis, Georgia Institute of Technology.

    Google Scholar 

  35. Phillips, B. A. (1986) A new future for absorption? ASHRAE Journal, Nov. 1986, 38–42.

    Google Scholar 

  36. Rojey, A. (1984) Process for Cold and/or Heat Production with use of Carbon Dioxide and a Condensable Fluid, U.S. Patent No. 4,448,031.

    Google Scholar 

  37. Rowe, D. M. (1995) Handbook of Thermoelectrics, CRC Press, Boca Raton, FL.

    Book  Google Scholar 

  38. Rowe, D. M. and C. M. Bhandari (1983) Modern Thermoelectrics, Reston Publishing Co., Reston, Virginia.

    Google Scholar 

  39. Sargent, S. L. (1968) Theoretical performance of an ammonia-sodium thiocyanate intermittent absorption refrigeration cycle, Solar Energy, Vol. 12, 137–146.

    Article  Google Scholar 

  40. Sellerio, U. (1951) Device to speed the circulation of water solutions in household absorption refrigerators, VIIIth Int. Congr. of Refrig., London, Vol. 8, pp. 453–459.

    Google Scholar 

  41. Semenuk, V. (2001), Low-temperature thermoelectric cooling: problems and prospects, in B. Kosoy (ed.), Proceedings of the 2nd International Workshop on Non-Compression Refrigeration and Cooling, Odessa, pp. 61–71.

    Google Scholar 

  42. Smith, J.M., and H.C. Van Ness (1994) Introduction to Chemical Engineering Thermodynamics, 4th ed., John Wtley, New York.

    Google Scholar 

  43. Van Wylen, G.J., Sonntag, R.E. (1973) Fundamentals of Classical Thermodynamics, 2nd ed., John Wiley, New York.

    Google Scholar 

  44. Vandersande, J.W., and Fleurial, J-P. (1996) Thermal management of power electronics using thermoelectric coolers, Proceedings of the 15th International Conference on Thermoelectrics, pp. 252–255.

    Google Scholar 

  45. White, F.M. (1986) Fluid Mechanics, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  46. Wichterle, J.L., Hala, E. (1973) Vapour-Liquid Equilibrium Data Bibliography, Elsevier Scientific Publishing Company, New York.

    Google Scholar 

  47. Wilding, W., Giles, N., Wilson, L. (1996) Phase equilibrium measurements on nine binary mixtures, Journal of Chemical Engineering Data, Vol, 41,(6), 1239–1251.

    Article  Google Scholar 

  48. Wilkinson, S. L. (2000) Playing it cool, Science/Technology, April 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kosoy, B.V. (2003). Non-Compression Refrigeration: Problems and Prospects. In: Kakaç, S., Smirnov, H.F., Avelino, M.R. (eds) Low Temperature and Cryogenic Refrigeration. NATO Science Series, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0099-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0099-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1274-7

  • Online ISBN: 978-94-010-0099-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics