Heat Pipe Applications in Sorption Refrigerators

  • L. L. Vasiliev
  • A. G. Kulakov
Part of the NATO Science Series book series (NAII, volume 99)


Some sorption refrigeration machines (sorption technologies) developed in Belarus are presented in this paper with emphasises on different heat pipes application: conventional heat pipes, heat pipe panels, loop heat pipes, vapour-dynamic thermosyphons, etc. Heat pipes are very flexible systems with regards to the effective thermal control. They can easily be implemented inside sorption refrigerators and other types of refrigerators [1]. Their heat transfer coefficients are typically in the range of 103–105 W/m2K, therefore lead to smaller area and mass of heat exchangers. Sorption machines are used for more than 50 years, but recently its parameters became competitive with the vapour compression cycles. One of possibilities to improve the sorption machines parameters is heat pipe (HP) application as thermal control systems. Sorption machines, or sorption technologies is a collective indication of refrigeration machines and heat pumps, in which the mechanically driven compressors is replaced by a thermally driven (for example by heat pipes) thermo-chemical, or thermo-physical sorption loops. Sorption technologies mostly are working with natural refrigerants (NH3, H2O). They can be built from a few tens of watts (refrigerator in mini-bar of hotel room) to the megawatts scale developed for industry.


Heat Pipe Heat Pump Annular Channel Pulsate Heat Pipe Vapour Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smimov H.F. (2002) Heat Pipe technology for Refrigeration and Cooling, Extended Abstracts of NATO Advanced Study Institute on Low —Temperature and Cryogenic Refrigeration-Fundamentals and Applications, June 23-July 5, Altin Yunus-Cesme, Izmir-Turkiye, pp. 76–79Google Scholar
  2. 2.
    Critoph R.E. (2000) The use of thermosyphon heat pipes to improve the performance of a carbon-ammonia adsorption refrigerator, Proc. IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, September 12-15, Minsk, Belarus.Google Scholar
  3. 3.
    Vasiliev L.L., Bogdanov V.M. (1992), USSR patent 174411 “Heat pipe”, B. I. No.24, 30.06.1992.Google Scholar
  4. 4.
    Storkenmaier F., Schmitt C., Pelz A., Martinez.Palomar R., Cerkvenik B., Stitou D., Ziegler F. (2002) Experimental results of cascaded triple-effect chillers. Int. Sorption Heat Pupm Conf., Shanghai, ChinaGoogle Scholar
  5. 5.
    Vasiliev L.L., Kanonchik, L.E., Kulakov A.G., Antuh, A.A. NaX (1996) Zeolite, Carbon Fibre and CaCl2 Ammonia Reactors for Heat Pumps and Refrigerators. J. Adsorption. (USA), No. 2, pp. 311–316Google Scholar
  6. 6.
    Spinner, B., Stitou, D., Grini, P. G. (1996) Cascading Sorption Machines: New Concepts for the Power Control of Solid-Gas Thermochemical Systems. Towards Sustainable Technologies, Proc. of the 1996 Ab-Sorption Heat Pump Conf., Montreal. Canada, Sept. 17-20, vol.2, pp.531–538.Google Scholar
  7. 7.
    Wang R.Z. (2000) Adsorption refrigeration research in SJTU, Proc. IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, September 4-7, 2000, pp. 104–114, Minsk, BelarusGoogle Scholar
  8. 8.
    Babenko, L.E. Kanonchik and Vasiliev L.L. (1998) Heat and Mass Transfer Intensification in Solid Sorption Systems, Enhanced Heat Transfer, Vol.5, pp. 111–125Google Scholar
  9. 9.
    Vasiliev L.L., Kanonchik L.E., Antoukh A.A., Kulakov A.G., Rosin I., (1994) Waste heat driven solid sorption coolers, SAE Technical Paper 941580, 24 th International Conference on Environmental Systems and 5 th European Symposium on Space Environmental Control Systems, Friedrichshafen, Germany, June 20–23Google Scholar
  10. 10.
    Vasiliev L.L., Kanonchik, L.E., Antuh, A.A., Kulakov A.G., Kulikovsky V.K. (1995) Waste Heat Driven Solid Sorption Coolers Containing Heat Pipes for Thermo Control. // J. Adsorption. (USA), No. 1, pp.303–312Google Scholar
  11. 11.
    Vasiliev L.L., Mishkinis D.A., Antuh, A.A., Kulakov A.G., Vasiliev L.L. Jr. (1995) Heat pipe cooled and heat solid sorption refrigerator, 19 th Int. Congress of Refrigeration., Vol. IIIa, HollandGoogle Scholar
  12. 12.
    Vasiliev L.L., Mishkinis D.A., Antuh, A.A., Kulakov A.G., Vasiliev L.L. Jr. (1996) Solid sorption machines on heat pipes. Int. Forum “Heat and Mass Transfer—96” Mmsk, BelarusGoogle Scholar
  13. 13.
    Vasiliev L., Nikanpour D., Antukh A., Snelson K., Vasiliev L. Jr., Lebru A. (1999) Multisalt-carbon chemical cooler for space application, Proceedings of the International Sorption Heat Pump Conference, March 24-26, Munich, GermanyGoogle Scholar
  14. 14.
    Vasiliev L., Antukh. A., Maziuk V., Kulakov A., Rabetsky M., Vasiliev L. Jr., Oh Se Min (2002) Miniature Heat Pipes Experimental Analysis And Software Development, Proceedings I2 th International Heat Pipe Conference- Moscow-Kostroma-Moscow, May 19-24, Vol.2, E–1Google Scholar
  15. 15.
    Maziuk V., Kulakov A., Rabetsky M., Vasiliev L., Vukovic M., (2001) Miniature heat-pipe thermal performance prediction tool-software development, // Applied Thermal Engineering, V. 21, pp. 559–571CrossRefGoogle Scholar
  16. 16.
    Vasiliev L.L. et al. US Patent “Heat transfer Device” N 455966 Nov. 26, 1985Google Scholar
  17. 17.
    Vasiliev L.L., Kanonchik L.A., Molodkin F.F., Rabetsky M.I. (1996) Adsorption Heat Pump Using Carbon Fiber/NH3 and Heat Pipes, Proceedings of the 5 th IEA Heat Pump Conference, September 22-26 Toronto, Canada.Google Scholar
  18. 18.
    Vasiliev L.L., Mishkinis D.A., Antukh A.A., Vasiliev L.L. Jr., (2001) Solar-gas Solid Sorption Refrigerator, Adsorption 7, pp. 149–161CrossRefGoogle Scholar
  19. 19.
    Vasiliev L.L., Mishkinis D.A., Antukh A.A., Vasiliev L.L Jr.. (2001) Solar-gas solid sorption heat pump, Appl.Therm. Engn. Vol.21, pp. 573–583CrossRefGoogle Scholar
  20. 20.
    Vasiliev L.L. and Vasiliev L.L. Jr.. (2000), Two Phase Thermal Control System with a Loop Heat Pipe and Solid Sorption Cooler, SAE technical paper series 2000-01-2492.Google Scholar
  21. 21.
    Vasiliev L.L. (2002) Sorption machines with a heat pipe thermal control. Int. Sorption Heat Pupm Conf., September 2002, Shanghai, ChinaGoogle Scholar
  22. 22.
    Vasiliev L.L., Zhuravlyov A.S., Molodkin F.F., Khrolenok V.V., Adamov S.L., Turin A.A. (1995) Medical heat pipe instrument for local cavitary hypothermia, Preprints of 1 st International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, September 12-15, pp. 104–114, Minsk, BelarusGoogle Scholar
  23. 23.
    Smirnov H. F., Kosoy B.V. (2001) Refrigerating heat pipes, Applied Thermal Engineering, Vol.21, pp.631–641.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • L. L. Vasiliev
    • 1
  • A. G. Kulakov
    • 1
  1. 1.A. V.Luikov Heat and Mass Transfer InstituteMinskBelarus

Personalised recommendations