Skip to main content

Hydrodynamics and Heat Transfer in Boiling and Evaporation in Cryogenic Falling Films and Applications

  • Chapter
Book cover Low Temperature and Cryogenic Refrigeration

Part of the book series: NATO Science Series ((NAII,volume 99))

  • 1148 Accesses

Abstract

This lecture focus attention on the heat transfer and crisis phenomena in falling films of cryogenic liquid. Experimental results on behavior of a laminar-wavy liquid film at its intense evaporating under conditions of a gravity flow over a heated vertical surface are presented. A brief review of previous investigations is also given. Thin liquids films are utilized as an important component in various heat transfer processes because of their high heat transfer rate at low feed rates and with small temperature difference. Evaporators employing such characteristics are widely found in refrigeration systems, petrochemical and distillation plants, air and natural gas liquefying facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vorontsov, E.G., Tananaiko, Yu.M., (1972) Heat Transfer in Liquid Films, Tekhnika, Kiev.

    Google Scholar 

  2. Gimbutis, G., (1988) Heat Transfer at Gravitation Flow of a Liquid Film, Mokslas, Vilnius.

    Google Scholar 

  3. Alekseenko, S.V., Nakoryakov, V.E., and Pokusaev, B.G., (1992) Wavy Film Flow, Nauka, Sib. otd., Novosibirsk.

    Google Scholar 

  4. Editor - in Chief Kandlikar, Satish G., Taylor and Francis, (1999) Hand book ofPhase Change. Boiling and Condensation.

    Google Scholar 

  5. Adomeit, P., Leefken, A., Renz, U., (2000) Experimental and Numerical Investigation on Wavy Films, Proc. of 3 rd European Thermal-Science Conference, Heidelberg, Germany, 2, 1003–1009.

    Google Scholar 

  6. Al-Sibai, F., Leefken, A., Renz, U., (2001) Local and Instantaneous Distribution of Heat Transfer Rates Through Wavy Film, Proceedings of the Fifth World Conference on Experimental Heat Transfer, Liquid Mechanics, and Thermodynamics, Thessaloniky, Greece, 1959–1963.

    Google Scholar 

  7. Lyu, T.N., and Mudawar, I., (1991) Statistical Investigation of the Relationship between Interfacial Waviness and Sensible Heat Transfer to a Falling Liquid Film, Int. J. Heat Mass Transfer, 34,6, 1451–1464.

    Article  Google Scholar 

  8. Bankoff, S.G., (1971) Stability Study of Liquid Flow Down a Heated inclined Plane, Int. J. Heat Mass Transfer, 14, 377.

    Article  Google Scholar 

  9. Spindler, B., (1982) Linear Stability of Liquid Films with Interfacial Phase Change, Int.J. Heat Mass Transfer, 25,2, 161–173.

    Article  MATH  Google Scholar 

  10. Trifonov, Yu.A., (1993) The Effect of Waves with Finite Amplitude on Evaporation of a Liquid Film, Falling Down a Vertical Wall, J. Appl. Mech. Tech. Phys., 34,6, 64–71.

    MathSciNet  MATH  Google Scholar 

  11. Fujita, Y., (1999) Boiling and Evaporation of Falling Film on Horizontal Tubes and its Enhancement on Grooved Tubes, Kakac et al., in Heat Transfer Enhancement of Heat Exchangers, Kluwer Academic Publishers, pp.325–346.

    Google Scholar 

  12. Strove, H., (1969) Der Warmeubergang an einem Verdampfenden Riesel Film, VDI-Forschungs-heft, Dusseldorf (534), 1–36.

    Google Scholar 

  13. Dubrovsky, G.P., Didenko, A.Ya., and Kokorev, L.S., (1997) The Effect of Non-Isothermal Conditions on the Stability of Free-Falling Water Films, Soviet Atomic Energy, 31,6, 621.

    Google Scholar 

  14. Fujita, T., and Ueda, T., (1978) Heat Transfer to Falling Films and Film Breakdown-II. Saturated Liquids Film With Nucleate Boiling, Int. J. Heat Mass Transfer, 21, 109–118.

    Article  Google Scholar 

  15. Dorokhov, A.R., (1992) Heat and Mass Transfer in Units of Absorption Lithium-Bromide Refrigerating Machines, Theses of Doctor’s Degree in Techn. Sci., Tomsk, 281 p.

    Google Scholar 

  16. Baines, R. P., Masri, A. El., and Rohsenow, W. M., (1984) Critical Heat Flux in Flowing Liquid Films, Int. J. Heat Mass Transfer, 27,9, 1623–1629.

    Article  ADS  Google Scholar 

  17. Mudawar, I. A., Incropera, T. A., and Incropera, F. P., (1987) Boiling Heat Transfer and Critical Heat Flux in Liquid Films Falling on Vertically-Mounted Heat Sources, Int. J. Heat Mass Transfer, 30, 2083–2095.

    Article  Google Scholar 

  18. Mudawar, I. A., and Maddox, D. E., (1989) Critical Heat Flux in Subcooled Flow Boiling of Fluorocarbon Liquid on a Simulated Electronic Chip in a Vertical Rectangular Channels, Int. J. Heat Mass Transfer, 32,2, 379–394.

    Article  Google Scholar 

  19. Grigoryev, V. A., Pavlov, Yu. M., and Ametistov, E. V., (1977) Boiling of Cryogenic Liquids, Chap. 2, Energiya, M.

    Google Scholar 

  20. Grigoriev, V. A., Dudkevith, A. S., and Pavlov, Yu. M., (1970) Boiling of Cryogenic Liquids in Thin Film, Questions of Radioelectronics, Ser. “Thermal Regimes, Thermostabilization and Cooling of Radioelectronic Apparatus”, 1, 83–90, M.

    Google Scholar 

  21. Katto, Y., and Ishii, K., (1978) Burnout in a High Heat Flux Boiling System with a Forced Supply of Liquid through a Plane Jet, Proc. 6-th Int. Heat Transfer Conf, Toronto, 1, 435–440.

    Google Scholar 

  22. Fujita, T., and Ueda, T., (1978) Heat Transfer to Falling Liquid Films and Film Breakdown-I, Int. J. Heat Mass Transfer, 21, 97–108.

    Article  ADS  Google Scholar 

  23. Gogonin, I.I., Dorokhov, A. R., and Bochagov, V. N., (1979) Stability of “Dry Patches” in Thin, Falling Liquid Films, Fluid Mech.-Sov. Res., 8, 103–109.

    Google Scholar 

  24. Ganchev, B.G., and Bokov, A.E., (1980) The Study of Thermal Capillary Stability at the Gravitational Flow of Liquid Film, J. Eng. Phys. Thermophys., 39,4, 581–591.

    Google Scholar 

  25. Ito, A., Masunaga, N., and Baba, K., (1995) Marangoni Effects on Wave Structure and Liquid Film Breakdown along a Heated Vertical Tube, A. Serizawa, T. Fukano, and J. Bataille, Eds., In Advances in Multiphase Flow, Elsevier Sci. B.V., pp. 255–265.

    Google Scholar 

  26. Kabov, O. A., Marchuk, I. V., and Tereshenko, A. G., (2-6 June, 1997) Heat Transfer and Flow Pattern in Falling Liquid Film on Surface with Nonuniform Heat Flux Distribution, In Proceed. of the 4-th World Conf. on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, 2, 1205–1214.

    Google Scholar 

  27. Zuber, N., and Staub, F. W., (1966.) Stability of Dry Patsches Forming in Liquid Films Flowing over Heated Surfaces, Int. J. Heat Mass Transfer, 9, 897–905.

    Article  Google Scholar 

  28. Alekseenko, S. V., Nazarov, A. D., Pavlenko, A. N., et al., (1997) The Flow of a Cryogenic Liquid Film on a Vertical Surface, Thermophysics and Aeromechanics, 4,3, 291–302.

    Google Scholar 

  29. Krotov, S. V., Nazarov, A. D., Pavlenko, A. N., et al., (1997) Capacitive Meter of Local Thickness of Liquid Films, Instrum. and Exp. Tech., 40,1, 136–139.

    Google Scholar 

  30. Ueda, T., Inoue, M., and Nagatome S., (1981) Critical Heat Flux and Droplet Entrainment Rate in Boiling of Falling Liquid Films, Int. J. Heat Mass Transfer, 24,7, 1257–1266.

    Article  Google Scholar 

  31. Duffey, R. B., and Hughes, E. D., (1991) Dryout Stability and Inception at Low Flow Rates, Int. J. Heat Mass Transfer, 34,2, 473–481.

    Article  Google Scholar 

  32. Pavlenko, A.N., Chekhovich, V.Yu., and Starodubtseva, I.P., (1994) Study of Propagation Dynamics for the Site of Film Regime Boiling, Russ. J. Eng. Thermophys, 4,4, 323–347.

    Google Scholar 

  33. Pavlenko, A.N., and Starodubtseva, I.P., (1998) The Study of the Development Dynamics of Semi-Infinite and Local Sites of Film Boiling, Thermophysics and Aeromechanics, 5,2, 195–207.

    Google Scholar 

  34. Pavlenko, A. N., Lel’, V.V., (1997) Heat Transfer and Crisis Phenomena in Falling Films of Cryogenic Liquid, Russian Journal of Engineering Thermophysics, 7,3-4, 177–210.

    Google Scholar 

  35. Pavlenko, A. N., (2001) Transitional Processes at Boiling and Evaporation, Theses of Doctor’s Degree in Phys.-Math. Sci., Novosibirsk, p. 449.

    Google Scholar 

  36. White, D.A., and Tallmadge, J.A., (1965) Theory of Drainage of Liquids on Flat Plates, Chem. Eng. Sci, 20, 33.

    Article  Google Scholar 

  37. Levich, V.G., (1959) Physical-Chemical Hydrodynamics, Fizmatgiz, Moscow, p. 699.

    Google Scholar 

  38. Brauner, N., and Maron, D.M., (1983) Modeling of Wavy Flow in Inclined Thin Films, Chem. Eng. Sci, 38, 775–788.

    Article  Google Scholar 

  39. Vorontsov, E.G., (1999) Thermal Conductivity of Falling Films, Teor. OsnovyKhim. Tekhnol, 33,2, 117–127.

    Google Scholar 

  40. Nakoryakov, V.E., and Grigorieva, N.I., (1980) Calculation of Heat Transfer at Isothermal Absorption at the Initial Region of the Falling Liquid Film, Teoretichesk. Osnovy Khim. Tekhnol, 14,4, 483–488.

    Google Scholar 

  41. Miyara, A., (1998) Numerical Analysis on Heat Transfer of Falling Liquid Films with Interfacial Waves, Proc. of the 11-th IHTC (Heat Transfer Conference), Korea, Kyondju, 2, 57–62.

    Google Scholar 

  42. Lutset, M.O., Zhukov, S.V., Chekhovich, V.Yu., Nazarov, A.D., Pavlenko, A.N., Zhukov, V.E., and Zhukova, N.V. (2000) A Study of Transient Heat Transfer from the Heater Surface to a Boiling Liquid, Instruments and Experimental Techniques, 43,3, 419–423.

    Article  Google Scholar 

  43. Trifonov, Yu. Ya., (1995) Hydrodynamics and Heat and Mass Transfer during the Flow of Thin Layers of Viscous Liquid with a Free Surface, Theses of Doctor’s Degree in Physical and Mathematical Sciences, Novosibirsk, 305p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pavlenko, A.N. (2003). Hydrodynamics and Heat Transfer in Boiling and Evaporation in Cryogenic Falling Films and Applications. In: Kakaç, S., Smirnov, H.F., Avelino, M.R. (eds) Low Temperature and Cryogenic Refrigeration. NATO Science Series, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0099-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0099-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1274-7

  • Online ISBN: 978-94-010-0099-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics