Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak

  • Dennis C. Bley
  • James G. Droppo
  • Vitaly A. Eremenko
  • Regina Lundgren
Part of the NATO ASI Series book series (NAIV, volume 18)

Abstract

Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States such as the Hanford facility; several are also underway in other countries such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions which are used to estimate environmental releases transport and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling when conducted is used to organize and validate the measurements.

Keywords

Biomass Migration Quartz Graphite Zirconium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vorobiova, M.I., Degteva, M.O., Burmistrov, D.S., Safronova, N.G., Kozheurov, V.P., Anspaugh, L.R., and Napier, B.A. (1999) Review of historical monitoring data on Techa River contamination. Health Phys. 76 605–618.CrossRefGoogle Scholar
  2. 2.
    Saurov, M.M. (1992) Measurement of dose-rates of external exposure and survey on life-styles of inhabitants along the Techa River. Presented at the Russian-Japanese experts’ meeting on epidemiological research of radiation effects in the Techa River Basin in Southern Urals. January 24–28, 1992, Tokyo, Japan.Google Scholar
  3. 3.
    Shipler, D.B., Napier, B.A., Farris, W.T., and Freshley, M.D. (1996) The Hanford Environmental Dose Reconstruction Project-an overview, Health Physics 71 532–544.CrossRefGoogle Scholar
  4. 4.
    Pacific Northwest Laboratory. (1990)Air Pathway Report: Phase I of the Hanford Environmental Dose Reconstruction Project.PNL-7410 HEDR, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  5. 5.
    Pacific Northwest Laboratory. (1990)Columbia River Pathway Report: Phase I of the Hanford Environmental Dose Reconstruction Project.PNL-7412 HEDR, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  6. 6.
    Simpson, J.C. (1990)Dose Estimate Variability Caused by Air Model Uncertainties.PNL-7737 HEDR, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  7. 7.
    Simpson, J.C. (1991)Effects of the Loss of Correlation Structure on Phase I Dose Estimates.PNL7638 HEDR, Pacific Northwest Laboratory, Richland, Washington.CrossRefGoogle Scholar
  8. 8.
    Napier, B.A. (1991) Selection of Dominant Radionuclides for Phase I of the Hanford Environmental Dose Reconstruction Project. PNL-7231 HEDR, Pacific Northwest National Laboratory, Richland, Washington.Google Scholar
  9. 9.
    Heeb, C.M.(1992) Iodine-131 Releases From the Hanford Site 1944 through 1947.PNWD-2033 HEDR Vol. 1–2., Battelle Pacific Northwest Laboratories, Richland, Washington.CrossRefGoogle Scholar
  10. 10.
    Heeb, C.M., Gydesen, S.P., Simpson, J.C., and Bates, D.J. (1996) Reconstruction of radionuclide releases from the Hanford SiteHealth Physics71 545–555.CrossRefGoogle Scholar
  11. 11.
    Walters, W.H., Dirkes, R.L., and Napier, B.A. (1992)Literature and Data Review for the Surface Water Pathway: Columbia River and Adjacent Coastal Areas.PNWD-2034 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.Google Scholar
  12. 12.
    Napier, B.A. (1993)Determination of Key Radionuclides and Parameters Related to Dose From the Columbia River Pathway.BN-SA-3768 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.CrossRefGoogle Scholar
  13. 13.
    Ramsdell, J.V., Jr, and Burk, K.W. (1992) Regional Atmospheric Transport Code For Hanford Emission Tracking (RATCHET). PNL-8003 HEDR, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  14. 14.
    Ramsdell, J.V., Jr., Simonen, C.A., Burk, K.W., and Stage, S.A. (1996) Atmospheric dispersion and deposition of131I released from the Hanford SiteHealth Physics71 568–577.CrossRefGoogle Scholar
  15. 15.
    Holly, F.M., Jr., Yang, J.C., Schwarz, P., Schaefer, J., Hsu, S.H., and Einhellig, R. (1990)CHARIMA: Numerical Simulation of Unsteady Water and Sediment Movement in Multiply Connected Networks of Mobile-Bed Channels.IIHR Report No. 343, Iowa Institute of Hydraulic Research, Iowa State University, Iowa City, Iowa.Google Scholar
  16. 16.
    Walters, W.H., Richmond, M.C., and Gilmore, B.G. (1996) Reconstruction of radioactive contamination in the Columbia RiverHealth Physics71 556–567.CrossRefGoogle Scholar
  17. 17.
    Ikenberry, T.A., Burnett, R.A., Napier, B.A., Reitz, N.A., and Shipler, D.B. (1992)Integrated Codes for Estimating Environmental Accumulation and Individual Dose for Past Hanford Atmospheric Releases.PNL-7993 HEDR, Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  18. 18.
    Beck, D.M., Darwin, R.F., Erickson, A.R., and Eckert, R.L. (1992)Milk Cow Feed Intake and Milk Production and Distribution Estimates for Phase I.PNL-7227 HEDR, Pacific Northwest Laboratory, Richland, Washington.CrossRefGoogle Scholar
  19. 19.
    Marsh, T.L., Anderson, D.M., Farris, W.T., Ikenberry, T.A., Napier, B.A., and Wilfert, G.L. (1992) Commercial Production and Distribution of Fresh Fruits and Vegetables: A Scoping Study on the Importance of Produce Pathways to Dose. PNWD-2022 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.Google Scholar
  20. 20.
    Denham, D.H., Thiede, M.E., Dirkes, R.L., Hanf, R.W., and Poston, T.M. (1993)Phase I Summaries of Radionuclide Concentration Data for Vegetation River Water Drinking Water and Fish.Battelle Pacific Northwest Laboratories, Richland, Washington.Google Scholar
  21. 21.
    Freshley, M.D., and Thorne, P.D. (1992) Ground-Water Contributions to Dose from Past Hanford Operations. PNWD-1974 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.Google Scholar
  22. 22.
    Anderson, D.M., Marsh, T.L., and Deonigi, D.A. (1996) Developing historical food production and consumption data for 131I dose estimates: the Hanford experience, Health Physics 71 578–587.CrossRefGoogle Scholar
  23. 23.
    Farris, W.T., Napier, B.A., Ikenberry, T.A., and Shipler, D.B. (1996) Radiation doses from Hanford Site releases, Health Physics 71 588–601.CrossRefGoogle Scholar
  24. 24.
    Gilbert, R.O., Napier, B.A., Liebetrau, A.M., and Haerer, H.A. (1991) Statistical aspects of reconstructing the I-131 dose to the thyroid of individuals living near the Hanford Site in the mid-1940s.Radiation Protection Dosimetry36 195–198.Google Scholar
  25. 25.
    Simpson, J.C., and Ramsdell, J.V., Jr. (1993)Uncertainty and Sensitivity Analysis Plan.PNWD-2124 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.Google Scholar
  26. 26.
    Napier, B.A., Simpson, J.C., Eslinger, P.W., Ramsdell, J.V., Jr., Thiede, M.E., and Walters, W.H. (1994)Validation of HEDR Models.PNWD-2221 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.Google Scholar
  27. 27.
    Napier, B.A., Eslinger, P.W., Nichols, W.E., and Anderlini, L. (2000) Improvements in modeling sagebrush concentrations of radioactive iodine released from the Hanford SiteEnvironmental Radioactivityin press.Google Scholar
  28. 28.
    Kossenko, M.M., Degteva, M.O., Vyushkova, O.V., Preston, D.L., Mabuchi, K., and Kozheurov, V.P. (1997) Issues in the comparison of risk estimates for the population in the Techa River Region and atomic bomb survivors.Radiat. Res. 14854–63.CrossRefGoogle Scholar
  29. 29.
    Kozheurov, V.P. (1994) SICH9.1-A unique whole-body counting system for measuring Sr-90 via bremsstrahlung: The main results from a long-term investigation of the Techa River population.Sci. Total Environ.14 37–48.CrossRefGoogle Scholar
  30. 30.
    Kozheurov, V.P., and Degteva, M.O. (1994) Dietary intake evaluation and dosimetric modelling for the Techa River residents based on in vivo measurements of strontium-90 in teeth and skeleton.Sci. Total Environ. 1463–72.CrossRefGoogle Scholar
  31. 31.
    Degteva, M.O., Drozhko, E., Anspaugh, L., Napier, B., Bouville, A., and Miller, C. (1996) Dose Reconstruction for the Urals Population. Joint Coordinating Committee on Radiation Effects Research. Project 1.1—Final Report. Rept. UCRL-ID-123713, Lawrence Livermore National Laboratory, Livermore, California.Google Scholar
  32. 32.
    Degteva, M.O., and Kozheurov, V.P. (1994) Age-dependent model for strontium retention in human bone.Radial. Prot. Dosim.53 229–233.Google Scholar
  33. 33.
    Degteva, M.O., Kozheurov, V.P., and Tolstykh, E.I. (1998) Retrospective dosimetry related to chronic environmental exposure.Radial. Prot. Dosim.79155–160.CrossRefGoogle Scholar
  34. 34.
    Vorobiova, M.I., and Degteva, M.O. (1999) Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River.Health Phys.77 142–149.CrossRefGoogle Scholar
  35. 35.
    Le Grand, J. (1972) Contamination by osteotropic 13-emitters — an evaluation of the doses in bone marrow and endosteum. InProceedings of 2 nd International Conference on Strontium Metabolism4965, CONF-720818, Glasgow and Strontian, United Kingdom.Google Scholar
  36. 36.
    Spiers, F.W., Beddoe, A.H., and Whitwell, J.R. (1978) Mean skeletal dose factors for beta-particle emitters in human bone. Part l: Volume-seeking radionuclides.Brit. J. Radial.51 622–627.CrossRefGoogle Scholar
  37. 37.
    International Commission on Radiological Protection. (1993) Age-Dependent Doses to Members of the Public from Intake of Radionuclides: Part 2: Ingestion Dose Coefficients. ICRP Publication 67, Pergamon Press, Oxford, England.Google Scholar
  38. 38.
    Berkovsky, V. (1992) Computer system for reconstruction and prediction of human internal doses. Doctoral Thesis (in Russian), Radiation Protection Institute, Kiev.Google Scholar
  39. 39.
    Eckerman, K.F, and Ryman, J.C. (1993)External Exposure to Radionuclides in Air Water and Soil.Federal Guidance Report No. 12, EPA 402-R-93–081, U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  40. 40.
    Shvedov, V.L., Goloschapov, P.V., Kossenko, M.M., Akleyev, A.V., Vorobiova, M.I., Degteva, M.O., Malkin, P.M., Safronova, N.G., Peremyslova, L.M., Yakovleva, V.P., Kozheurov, V.P., Nikolaenko, L.A., Rayt, M.K., Babina, T.D., and Kravtsova, E.M. (1990)Radiation-Hygienic and Medico-Biological Consequences of Massive Radioactive Contamination of the River System.Technical Report, Urals Research Center for Radiation Medicine, Chelyabinsk (in Russian).Google Scholar
  41. 41.
    Lebedev, V.M. (1982)Issues in the Reconstruction of Individual Doses for the Population of the Upper Techa Riverside.URCRM Technical Report, Urals Research Center for Radiation Medicine, Chelyabinsk (in Russian).Google Scholar
  42. 42.
    Vorobiova, M.I., Degteva, M.O., Kozyrev, A.V., Anspaugh, L.R., and Napier, B.A. (1999)External Doses Evaluated on the Basis of the Techa River Dosimetry System Approach.Technical Report, Urals Research Center for Radiation Medicine, Chelyabinsk.Google Scholar
  43. 43.
    Saurov, M.M. (1968) Radiation-Hygiene Assessment of Natural Movement of Population Exposed to Chronic Influence of Uranium Fission Products. Doctoral Thesis, Institute of Biophysics, Moscow (in Russian).Google Scholar
  44. 44.
    Kravtsova, E.M., Kolotygina, N.V., and Barkovsky, A.N. (1994) External irradiation of the residents of the Muslyumovo Village of Chelyabinsk Oblast. In V.N. Chukanov (ed.)Radiation Ecology Health. Part II: Impact of Radiation on the Public Health13–16. Ekaterinburg (in Russian).Google Scholar
  45. 45.
    Petoussi, N., Jacob, P., Zankl, M., and Saito, K. (1990) Organ doses for foetuses, babies, children and adults from environmental gamma rays.Radiat. Prot. Dosim.37 31–41.Google Scholar
  46. 46.
    Technical Steering Panel. (1990)Initial Hanford Radiation Dose Estimates.Washington State Department of Ecology, Olympia, Washington.Google Scholar
  47. 47.
    Napier, B.A., and Snyder, S.F. (1992)Determination of the Feasibility of Reducing the Spatial Domain of the HEDR Dose Code.BN-SA-3678 HEDR, Battelle Pacific Northwest Laboratories, Richland, Washington.CrossRefGoogle Scholar
  48. 48.
    Degteva, M.O., Kozheurov, V.P., Burmistrov, D.S., Vorobyova, M.I., Valchuk, V.V., Bougrov, N.G., and Shishkina, H.A. (1996) An approach to dose reconstruction for the Urals population.Health Phys.71 71–76.CrossRefGoogle Scholar
  49. 49.
    Tolstykh, E.I., Kozheurov, V.P., Burmistrov, D.S., Degteva, M.O., Vorobiova, M.I., Anspaugh, L.R., and Napier, B.A. (1998) Individual-Body-Burden Histories and Resulting Internal Organ Doses Evaluated on the Basis of the Techa River Dosimetry System Approach. Technical Report, Urals Research Center for Radiation Medicine, Chelyabinsk.Google Scholar
  50. 50.
    Bougrov, N.G., Göksu, H.Y., Haskell, E., Degteva, M.O., Meckbach, R., and Jacob, P. (1998) Issues in the reconstruction of environmental doses on the basis of thermoluminescence measurements in the Techa Riverside.Health Phys.75 74–583.CrossRefGoogle Scholar
  51. 51.
    Romanyukha, A.A., Ignatiev, E.A., Degteva, M.O., Kozheurov, V.P., Wieser, A., and Jacob, P. (1996) Radiation doses from Ural Region.Nature381 199–200.CrossRefGoogle Scholar
  52. 52.
    Degteva, M.O., Kozheurov, V.P., and Vorobiova, M.I. (1994) General approach to dose reconstruction in the population exposed as a result of the release of radioactive wastes into the Techa River.Sci. Total Environ.14:49–61.CrossRefGoogle Scholar
  53. 53.
    Degteva, M.O., Kozheurov, V..P., Vorobiova, M.I., Burmistrov, D.S., Khokhryakov, V.V., Suslova, K.G., Anspaugh, L.R., Napier, B.A., and Bouville, A. (1997) Population exposure dose reconstruction for the Urals Region. In Proceedings of Symposium on Assessing Health and Environmental Risks from Long-Term Radiation Contamination in Chelyabinsk, Russia. Pages 21–23, American Association for the Advancement of Science, Washington, D.C.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Dennis C. Bley
    • 1
  • James G. Droppo
    • 2
  • Vitaly A. Eremenko
    • 3
  • Regina Lundgren
    • 4
  1. 1.Buttonwood Consulting, Inc.OaktonUSA
  2. 2.BattellePacific Northwest National LaboratoryRichlandUSA
  3. 3.Department of Risk Analysis & ManagementICESMoscowRussia
  4. 4.KennewickUSA

Personalised recommendations