Skip to main content

Stability Conditions of Accumulative Forms of Sediments on Submarine Slopes

  • Chapter
Submarine Mass Movements and Their Consequences

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 19))

  • 509 Accesses

Abstract

A lack of data representing natural phenomena, that give rise to transformation of the continental slope appears to be the most serious challenge in obtaining the full pattern of the process. The latest advanced instruments have insured more intensive, though not yet enough systematic observations of the submarine mass movement. Therefore, it seems reasonable to seek for indirect means of evaluation of sediment dynamics on the shelf and continental slopes by specially derived equations. An article deals with the study of statistical and dinamical conditions and some criterion of stability of the sedimentary forms on the submarine slope in deltaic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.R.L., 1971. Mixing at turbidity current heads, and its geological implication. Jour. Sedimentary v.41,p.97–113.

    Google Scholar 

  • Almagor, G., 1982. Submarine slumping and mass movement on the continental slope of Israel. In marine slides and mass movements. Ed. S. Saxov and J.K. Nieuwenhuis. New York: Plnum, 95–128.

    Chapter  Google Scholar 

  • Bagnold, R. G., 1962. Auto-suspension of transported sediment: turbidity currents. Royal Society of London Series A, 265, 315–319.

    Google Scholar 

  • Bea, R. G., 1983. Wave-induced slides in South Pass Block 70, Mississippi Delta. Jour. of Geotechnical Engineering 109:619–644.

    Article  Google Scholar 

  • Bilashvili, A. A., 1978. An analysis of the formation and development of avalanches on submarine slopes. Jour. of Sedimentary Petrology, USA. vol. 48 No.1, 281–284.

    Google Scholar 

  • Bilashvili, K. A., 1984. Transformatsia podvodnikh aluvialnikh makroform na priustevom vzmorie. Soobshenie AN Gruzinskoi SSR, 113, No3.

    Google Scholar 

  • Bilashvili, K. A., 1988. Stability of an overhanging bold shore block separated from the structural continental mass by a rectilinear fracture. Theses, Int. Symposium Tbilisi-Batumi, 63–67.

    Google Scholar 

  • Brovikov I. S., 1954. Vetrovoe volnenie v melkovodnom more. Trudi GOIN, v. 26/38., GIDROMETEOIZDAT.

    Google Scholar 

  • Cochonat, P., Dodd, L., Bourillet, J.-F. & Savoye, B., 1993. Geotehnical characteristics and instability of submarine slope sediments, the Nice slope (N-W Mediterranean Sea). Marine Georesources and Geotechnology, 11(2), 131–151.

    Article  Google Scholar 

  • Dill, R. F., 1964. Sedimentations and erosion in Scripps submarine canyon head. Papers in Marine Geology (Shephard Commemorative Volume), N.Y., Macmillan, p. 23–41.

    Google Scholar 

  • Einsele, G., 1990. Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass, flows. Marine Geology 91., p. 267–279.

    Article  Google Scholar 

  • Hampton, M., 1987. Submarine landslides. Reviews of Geophysics, 34, 33–59.

    Article  Google Scholar 

  • Lee, H. J., 1986. Regional method to assess offshore slope stability. Jour. of Geotechnical Engineering 112: 489–509.

    Article  Google Scholar 

  • Longinov, V. V., 1971. Problema suspenzionikh potokov ν litodinamike okeana: Okeanologia v. 11, n.3, p.p. 263–373.

    Google Scholar 

  • Lowe, D. R., 1982, Sediment gravity flows: II Depositional models with special reference to the deposits of high-density turbidity currents. Jour. of Sedimentary Petrology, 52(1), 279–297.

    Google Scholar 

  • Middleton, G. V., 1966. Experiments on density and turbidity currents. Canadian Jour. Erth. Sci. v. 3, p. 523–546.

    Article  Google Scholar 

  • Morgenstern, N., 1967. Submarine slumping and the initiation of turbidity currents. Marine Geotechniques University of Illinois Press, 189–210.

    Google Scholar 

  • Mulder, T., Savoye, B., Piper, D.J.W.& Syvitski, J.P.M. 1998. The Var submarine sedimentary system: understanding Holocene sediment delivery processes and their importance to the geological record. In: Stoker, M.S., Evans, D. & Cramp, A. (eds.) Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability. Geological Society, London, Special Publications, 129, 145–166.

    Google Scholar 

  • Nardin, T. R., Hein, F.J., Gorsline, D. S. & Edwards, B. D., 1979. A review of mass movement processessediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon fan basin floor systems. Society of Economic Paleontologists and Mineralogists, Special Publication, 27, 61–73.

    Google Scholar 

  • Prior, D.B. & Coleman, J. M., 1978. Disintegrating retrogressive landslides on very-low-angle subaqueous slopes Mississippi Delta. Marine Geotechnology 3(1), 37–60.

    Article  Google Scholar 

  • Saphianov, G. A., 1970. Podvodnie kanioni i mutevie potoki sb. kompleksnie isledovania prirodi okeana,v. 1: Moscow p. 18–28.

    Google Scholar 

  • Savoye, B. & Piper, D.J.W., 1991. The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France. Marine Geology, 97, 279–304.

    Article  Google Scholar 

  • Shepard, F. P., McLoughlin, P.A., Marshall, N.F. & Sullivan, G.G., 1977. Current-meter recordings of low-speed turbidity currents. Geology, 5, 297–301.

    Article  Google Scholar 

  • Syvitski, J.P.M. & Alcott, J.M., 1995. RIVER3: Simulation of river discharge and sediment transport. Computers and Geosciences, 21(1), 89–151.

    Article  Google Scholar 

  • Terzaghi, K., 1942. Theoretical Soil Mechanics. John Wiley, New York, 510 pp.

    Google Scholar 

  • Voinich-Sianozhenski, T. G., Bilashvili K. A., 1972. Gidrodinamika ustevikh uchastkov bezprilevnikh morey. Leningrad, p. 57–79.

    Google Scholar 

  • Voinich-Sianozhenski, T. G., Togonidze N. V., 1969. Transformatsia poverkhnostnikh voln na potoke peremennoi glubini. Izvestia TNIICGEI, t.18., izd. ENERGIA, Moskva.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bilashvili, K.A., Savaneli, Z.S. (2003). Stability Conditions of Accumulative Forms of Sediments on Submarine Slopes. In: Locat, J., Mienert, J., Boisvert, L. (eds) Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0093-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0093-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3973-4

  • Online ISBN: 978-94-010-0093-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics