Skip to main content

Polyoxometalates in Tailored Supramolecular Architectures: From Structure to Function

  • Chapter
  • 1073 Accesses

Part of the book series: NATO Science Series ((NAII,volume 98))

Abstract

Molecular self-organization, a universal driving force in Nature, represents an efficient way to combine, position, and orient molecular components in a well-defined supramolecular architecture through weak non-covalent interactions. In the progression of structural hierarchy from the atom to the molecule, the supermolecule, and the supramolecular module (SUMO), characteristic functions emerge that do not exist at lower levels. SUMOs evolve spontaneously from suitably instructed components through a sequence of recognition, growth, and termination steps [1]. Intriguing examples of SUMOs have been reported, exploiting ligand-metal ion coordination [2], π-π interactions [3], or hydrogen-bonding [4]. The modularity of self-assembly provides access to a wide range of structures and functions and permits control thereof from molecular to macroscopic length scales. The ability of SUMOs to accomplish intricate functions provides opportunities that go far beyond current micro-fabrication technology [5]. Applications of such systems are intriguingly diverse, including information storage, signal transduction and amplification, as well as host-guest recognition [6].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehn, J.-M. (1995) Supramolecular Chemistry—Concepts and Perspectives, VCH Wiley, Weinheim.

    Google Scholar 

  2. Stang, PJ. and Olenyuk, B. (1997) Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra, Ace. Chem. Res. 30, 502–518.

    Article  CAS  Google Scholar 

  3. Ciaessens, CG. and Stoddart, J.F. (1997) P-p Interactions in self-assembly, J. Phys Org. Chem. 10, 254–272.

    Article  Google Scholar 

  4. a) Whitesides, G.M., Simanek, E.E., Mathias, J.P., Seto, CT., Chin, D., Mammen, M. and Gordon, D.M. (1995) Non-covalent synthesis: using physical-inorganic chemistry to make aggregates, Ace. Chem. Res. 28, 11–44. b) Rebek, J. (1999) Reversible encapsulation and its consequence in solution, Ace. Chem. Res. 32, 278-286.

    Article  Google Scholar 

  5. Kurth, D.G. (2002) Metallosupramolecular coordination polyelectrolytes: potential building blocks for molecular-based devices, Annals of the New York Academy of Sciences 960, 29–38.

    Article  CAS  Google Scholar 

  6. Balzani, V., Credi, A., Raymo, F.M. and Stoddart, J.F. (2000) Artificial molecular machines, Angew. Chem. Int. Ed. 39, 3348–3391.

    Article  CAS  Google Scholar 

  7. (a) Kozhevnikov, I.V. (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev. 98, 171–198. (b) Mizuno, N. and Misono, M. (1998) Heterogenous catalysis, Chem. Rev. 98, 199-217.

    Article  CAS  Google Scholar 

  8. (a) Weinstock, I.A. (1998) Homogeneous-phase electron-transfer reactions of polyoxometalates, Chem. Rev. 98, 113–170. (b) Sadakane, M. and Steckhan, E. (1998) Electrochemical properties of polyoxometalates as electrocatalysts, Chem. Rev. 98, 219-237.

    Article  CAS  Google Scholar 

  9. Yamase, T. (1998) Photo-and electrochromism of polyoxometalates and related materials, Chem. Rev. 98, 307–325.

    Article  CAS  Google Scholar 

  10. Rhule, J.T., Hill, C.L., Judd, D.A. and Schinazi, R.F. (1998) Polyoxometalates in medicine, Chem. Rev. 98, 327–357.

    Article  CAS  Google Scholar 

  11. Katsoulis, D.E. (1998) A survey of applications of polyoxometalates, Chem. Rev. 98, 359–387.

    Article  CAS  Google Scholar 

  12. a) Pope, M.T. (1980) in D.B. Brown (ed.), Mixed Valence Compounds, D. Reidel, Dordrecht, pp.365, b) Pope M.T. (1991) Molybdenum oxygen chemistry-oxides, oxo, complexes, and polyoxoanions, Prog. Inorg. Chem. 39, 181-257.

    Chapter  Google Scholar 

  13. Liu, S., Kurth, D.G. and Volkmer, D. in preparation.

    Google Scholar 

  14. a) Gabriel, J.P. and Davidson, P. (2000) New trends in colloidal liquid crystals based on mineral moieties, Adv. Mater. 12, 9–20. b) Sonin, A.S. (1998) Inorganic lyotropic liquid crystals, Colloid J. 60, 129-151. c) Davidson, P., Batail, P., Gabriel, J. C.P, Livage, J., Sanchez, C and Bourgaux, C (1997) Mineral liquid crystalline polymers, Prog. Polym. Sci. 22, 913-936.

    Article  CAS  Google Scholar 

  15. Swalen, J.D, Allara, D.L, Andrade, J.D, Chandross, E. A., Garoff, S., Israelachvili, J., McCarthy, T., J. Murray, R., Pease, R.F, Rabolt, J.F, Wynne, K.J and Yu, H. (1987) Molecular monolayers and films, Langmuir 3, 932–950.

    Article  CAS  Google Scholar 

  16. Decher, G. (1997) Fuzzy Nanoassemblies—Toward Layered Polymeric Multicomposites, Science 277, 1232–1237.

    Article  CAS  Google Scholar 

  17. a) Kurth, D.G and Bein, T. (1995) Thin films of (3-aminopropyl)triethoxylsilane on alumiminum oxide and gold substrates, Langmuir 11, 3061–3067.

    Article  CAS  Google Scholar 

  18. (a) Chechik, V and Stirling, C.J.M. (1999) Gold-thiol self-assembled monolayers, in S. Patai and Z. Rappoport (eds.), The Chemistry of Organic Derivatives of Gold and Silver, John Wiley & Sons Ltd, pp. 551–640. (b) Ulman, A. (1991) An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to S elf-Assembly, Academic Press, New York.

    Google Scholar 

  19. Kurth, D.G and Osterhout R.E (1999) In-situ Analysis of Metallosupramolecular Coordination Polyelectrolyte Films by Surface Plasmon Resonance Spectroscopy, Langmuir 15, 4842–4846.

    Article  CAS  Google Scholar 

  20. a) Ingersoll, D., Kulesza, P.J and Faulkner L.R. (1994) Polyoxometallate-based layered composite films on electrodes. Preparation through alternate immersions in modification solutions, J. Electrochem. Soc. 141, 140–147. b) Kuhn, A. and Anson, F.C (1996) Adsorption of monolayer of P2Mo18O62 6- and deposition of multiple layers of Os(bpy)3 2+ —P2Mo18O62 6- on electrode surfaces, Langmuir 12, 5481-5488. c) Sun, S. and Zhang, J. (1998) Fabrication and electrochemical behavior of multilayer films containing 1:12 phosphomolybdic anions and their electrocatalytic oxidation of ascorbic acid, Electrochim. Ada 43, 943-950.

    Article  CAS  Google Scholar 

  21. Moriguchi, I. and Fendler, J.H (1998) Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate, Chem. Mater. 10, 2205–2211.

    Article  CAS  Google Scholar 

  22. Ichinose, I., Tagawa, H., Mizuki, S., Lvov, Y. and Kunitake, T. (1998) Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations, Langmuir 14, 187–192.

    Article  CAS  Google Scholar 

  23. Kurth, D.G, Volkmer, D., Ruttorf, M., Richter, B. and Müller A. (2000) Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate “Keplerate” (NH4)42[Mo132O372(CH3COO)30(H2O)72], Chem. Mater. 12, 2829.

    Article  CAS  Google Scholar 

  24. Caruso, F., Kurth, D.G, Volkmer, D., Koop, M.J and Müller A. (1998) Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films, Langmuir 14, 3462–3465.

    Article  CAS  Google Scholar 

  25. Liu, S., Kurth, D.G., Bredenkoetter, B. and Volkmer D., The structure of layer-by-layer self-assembled multilayers with polyoxometalate Nanoclusters, J. Am. Soc. Chem. in press.

    Google Scholar 

  26. Liu, S., Kurth, D.G and Volkmer D. (2002) Polyoxometalate s as pH-sensitive probes in self-assembled multilayers, Chem. Commun. 976–977.

    Google Scholar 

  27. Liu, S., Kurth, D.G, Möhwald, H. and Volkmer D. (2002) A thin-film electrochromic device based on a polyoxometalate cluster, Adv. Mater. 14, 225–228.

    Article  Google Scholar 

  28. Xu, L., Wang, E., Zhang, H., Kurth, D.G and Li Z. (2002) Photoluminescent multilayer films based on polyoxometalate, J. Mater. Chem. 12, 654–657.

    Article  CAS  Google Scholar 

  29. Lösche, M., Schmitt, J., Decher, G., Bouwman, W.G. and Kjaer, K. (1998) Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry, Macromolecules 31, 8893–8906.

    Article  Google Scholar 

  30. Schmitt, J., Grünewald, T., Decher, G., Pershan, P.S., Kjaer, K. and Lösche M. (1993) Internal structure of layer-by-layer adsorbed polyelectrolyte films —a neutron and X-ray reflectivity study, Macromolecules 26, 7058–7063.

    Article  CAS  Google Scholar 

  31. Tarabia, M., Hong, H., Davidov, D., Kirstein, S., Steitz, R., Neumann, R. and Avny Y. (1998) Neutron and X-ray reflectivity studies of self-assembled hetero structure s based on conjugated polymers, J. Appl. Phys. 83, 725–732.

    Article  CAS  Google Scholar 

  32. (a) Oldham, K.B (1981) An algorithm for semi-integration, semi-differentiation and other instances of differintegration, J. Electroanal. Chem. 121, 341–342. (b) Daum, P., Lenhard, J. R., Rolisan, D. and Murray, R.W (1980) Chemically modified electrodes. 21. Diffusional charge transport through ultrathin films of radiofrequency plasma polymerized vinylferrocene at low-temperature, J. Am. Chem. Soc. 102, 4649-4653.

    Article  Google Scholar 

  33. Liu, S., Kurth, D.G and Volkmer, D. in preparation.

    Google Scholar 

  34. Antonio, M.R and Soderholm, L. (1997) Implications of the unusual redox behavior exhibited by the heteropolyanion [EuP5W30O110]12”, J. Alloys Compounds 250, 541–543.

    Article  CAS  Google Scholar 

  35. Mahmoud, A., Keita, B., Nadjo, L., Oung, O., Contant, R., Brown, S. and de Kouchkovsky, Y. (1999) Coupled electron and proton transfers: compared behaviour of oxometalates in aqueous solution or after entrapment in polymer matrices, J. Electroanal. Chem. 463, 129–145.

    Article  CAS  Google Scholar 

  36. Lin, J. (2000) Recent development and applications of optical and fiber-optic pH sensors, Trends Anal. Chem. 19, 541–552.

    Article  CAS  Google Scholar 

  37. Schmid, G. (1994) Clusters and Colloids, VCH, Weinheim.

    Google Scholar 

  38. Gouzerh, P. and Proust, A. (1998) Main-group element, organic, and organometallic derivatives ofpolyoxometalates, Chem. Rev. 98, 77–111.

    Article  CAS  Google Scholar 

  39. (a) Clemente-León, M., Mingotaud, C., Agricole, B., Gómez-García, C.J., Coronado, E. and Delhaes, P. (1997) Application of the Langmuir-Blodgett technique to polyoxometalates: Towards new magnetic films, Angew. Chem. Int. Ed. Engl. 36, 1114–1116. (b) Janauer, CG., Dobley, A., Guo, J.D., Zavalij, P. and Whittingham, M.S. (1996) Novel tungsten, molybdenum, and vanadium oxides containing surfactant ions, Chem. Mater. 8, 2096-2101. (c) Stein, A., Fendorf, M., Jarvie, T.P., Müller, K.T., Benesi, A.J. and Mallouk, T.E. (1995) Salt gel synthesis of porous transition-metal oxides, Chem. Mater. 7, 304-313.

    Google Scholar 

  40. Kurth, D.G., Lehmann, P., Volkmer, D., Cölfen, H., Koop, M.J., Müller, A. and Du Chesne, A. (2000) Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a case-Study, Chem. Eur. J., 6, 385–393.

    Google Scholar 

  41. Volkmer, D., Du Chesne, A, Kurth, D.G., Schnablegger, H., Lehmann, P., Koop, M.J. and Müller, A. (2000) Towards nanodevices: Synthesis and characterization of the nanoporous surfactant-encapsulated Keplerate (DODA)40 (NH4)2 [(H2O)n ⊂ Mo132O372(CH3COO)30(H2O)72], J.Am. Chem. Soc. 122, 1995–1998.

    Article  CAS  Google Scholar 

  42. Kurth, D.G, Lehmann, P., Volkmer, D., Müller, A. and Schwahn, D. (2000) Biologically imspired polyoxometalate-surfactant composite materials. Investigations on the structures of discrete, surfactant-encapsulated clusters, monolayers, and Langmuir-Blodgett films of (DODA)40 (NH4)2 [(H2O)n ⊂ Mo132O372(CH3COO)30(H2O)72], J. Chem. Soc, Dalton Trans. 3989–3998.

    Google Scholar 

  43. Volkmer, D., Bredenkötter, B., Tellenbröker, J., Kögerler, P., Kurth, D.G, Lehmann, P., Schnablegger, H., Schwahn, D., Piepenbrink, M. and Krebs, B. (2002) Structure and properties of the dendron-encapsulated polyoxometalate (C52H60NO12)12[Mn(H2O)3(SbW9O33)2], a first generation dendrozyme, J. Am. Chem. Soc. in press.

    Google Scholar 

  44. The molecular surface area of a single DODA cation as determined from the lamellar arrangement of DODA cations in the single crystal structure of the compound DODA • Br (monohydrate), CSD entry code CIYWOW20, is 56.7 Å2. Okuyama, K., Soboi, Y., Iijima, N., Hirabayashi, K., Kunitake, T. and Kajiyama, T. (1988) Molecular and Crystal Structure of the Lipid-Model Amphiphile, Dioctadecylammonium Bromide Hydrate, Bull. Chem. Soc. Jpn. 61, 1485–1490. Empirical values for the molecular surface area of a single DODA cation have been frequently determined from the Langmuir isotherms. The reported values range from 60-100 Å2/ DODA molecule, depending on the chemical nature of counter anions within the aqueous subphase. See: (a) Marra, J. (1986) Effects of Counterion Specifity on the Interactions between Quaternary Ammonium Surfactants in Monolayers and Bilayers, J. Phys. Chem. 90, 2145-2150. (b) Clemente-León, M., Agricole, B., Mingotaud, C., Gómez-García, C.J., Coronado, E. and Delhaes, P. (1997) Toward new organic/inorganic superlattices: Keggin polyoxometalates in Langmuir and Langmuir-Blodgett films, Langmuir 13,2340-2347.

    Article  CAS  Google Scholar 

  45. Kuhn, H. and Möbius, D. (1993) Monolayer Assemblies, in Physical Methods of Chemistry Series, Vol. IX B. Rossiter, W., Baetzold, R.C (eds.), John Wiley & Sons, 375–542.

    Google Scholar 

  46. Bain, CD, Troughton, E.B, Tao, Y.-T., Evall, J., Whitesides, G.M and Nuzzo, R.G (1989) Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols From Solution onto Gold, J. Am. Chem. Soc. 11, 321–335.

    Article  Google Scholar 

  47. Gao, M.Y, Richter, B. and Kirstein, S. (1997) White-light electroluminescence from a self-assembled Q-CdSe/PPV multilayer structures, Adv. Mater. 9, 802.

    Article  CAS  Google Scholar 

  48. Onitsuka O., Fou A.C, Ferreira M., Hsieh B.R and Rubner, M. F. (1996) Enhancement of light emitting diodes based on self-assembled heterostructures of poly(p-phenylene vinylene), J. Appl. Phys. 80, 4067–4071.

    Article  CAS  Google Scholar 

  49. Anicet, N., Bourdillon, C., Moiroux, J. and Savenant, J.M (1998) Electron transfer in organized assemblies of biomolecules. Step-by-step avidin/biotin construction and dynamic characteristics of a spatially ordered multilayer enzyme Electrode, J. Phys. Chem. B 102, 9844–9849.

    Article  CAS  Google Scholar 

  50. Kraseman, L. and Tieke, B. (2000) Selective ion transport across self-assembled alternating multilayers of cationic and anionic poly electrolytes, Langmuir 16, 287–290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kurth, D.G., Liu, S., Volkmer, D. (2003). Polyoxometalates in Tailored Supramolecular Architectures: From Structure to Function. In: Borrás-Almenar, J.J., Coronado, E., Müller, A., Pope, M. (eds) Polyoxometalate Molecular Science. NATO Science Series, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0091-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0091-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1242-6

  • Online ISBN: 978-94-010-0091-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics