Advertisement

Multiterminal Counting Statistics

A short review
  • Dmitri A. Bagrets
  • Yuli V. Nazarov
Chapter
Part of the NATO Science Series book series (NAII, volume 97)

Abstract

The field of quantum noise in mesoscopic systems has been exploded during the last decade, some achievements being summarized in a recent review article. [1] While in classical systems shot noise is just a straightforward manifestation of discreteness of the electron charge, it can be used in quantum system as unique tool to reveal the information about the electron correlations and entanglement of various kinds. Measurement of fractional charge in Quantum Hall regime [2], noise measurements in atomic-size junctions [3], chaotic quantum dots[4] and superconductors [6, 6] are milestones of the field of quantum noise. Starting from the pioneering work of Büttiker[7], a special attention has been also paid to shot noise and noise correlations in the ”multi-terminal” circuits. The correlations of currents flowing to/from different terminals can, for instance, reveal Fermi statistics of electrons. Such cross-correlations have been recently seen experimentally in Ref. [8, 9, 10].

Keywords

Green Function Master Equation Circuit Theory Fano Factor Coulomb Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. M. Blanter and M. Büttiker, Phys. Rep. 336,1 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79, 2526 (1997).; R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature 389,162 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    R. Cron, M. F. Goffman, D. Esteve, and C. Urbina, Phys. Rev. Lett. 86,4104 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    S. Oberholzer, E. V. Sukhorukov, C. Strunk, C. Schönenberger. T. Heinzel, and M. Holland, Phys. Rev. Lett. 86,2114 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Kozhevnikov, R. J. Schoelkopf, and D. E. Prober, Phys. Rev. Lett 84,3398 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    X. Jehl et. al., Nature (London) 405,50 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    M. Büt tiker, Phys. Rev. B 46,12485 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391,263 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    W. D. Oliver, J. Kim, R. C. Liu, Y. Yamamoto, Science, 284,299 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    M. Henny, S. Oberholzer, C. Strunk, T. Heizel, K. Ensslin, M. Holland, C. Schönenberger, Science 284,296 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    L. S. Levitov and G. B. Lesovik, JETP Lett. 58,230 (1993).ADSGoogle Scholar
  12. 12.
    L.S. Levitov, H.-W. Lee, and G. B. Lesovik, Journal of Mathematical Physics, 37 (1996) 10.MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Lee, L. S. Levitov, A. Yu. Yakovets, Phys. Rev. B, 51,4079 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Ya. M. Blanter, H. Schomerus, and C.W.J. Beenakker, Physica E 11,1 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    A. Andreev and A. Kamenev, Phys. Rev. Lett., 85,1294 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    L. S. Levitov, arXiv: cond-mat/0103617, see also the contribution to the present bookGoogle Scholar
  17. 17.
    Y. Makhlin and A. D. Mirlin, Phys. Rev. Lett., 87, 276803 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Yu. V. Nazarov, Ann. Phys. (Leipzig) 8 Spec. Issue, SI-193 (1999), cond-mat/9908143.Google Scholar
  19. 19.
    Yu. V. Nazarov, Generalized Ohm’s Law, in: Quantum Dynamics of Submicron Structures, eds. H. Cerdeira, B. Kramer, G. Schoen, Kluwer, 1995, p. 687.Google Scholar
  20. 20.
    W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett., 87, 067006 (2001); W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett., 87, 197006 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    Ya. M. Blanter, E. V. Sukhorukov, Phys. Rev. Lett. 84,1280 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Andreev and E. G. Mishchenko Phys. Rev. B 64, 233316 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    M.-S. Choi, F. Plastina, and R. Fazio Phys. Rev. Lett. 87, 116601 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Yu. V. Nazarob, D. A. Bagrets, Phys. Rev. Lett. 88, 196801 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    J. Rammer and H. Smith, Rev. Mod. Phys. 58,323 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    A. I. Larkin and Yu. V. Ovchinninkov, Sov. Phys. JETP 41,960 (1975); Sov. Phys. JETP 46,155 (1977).ADSGoogle Scholar
  27. 27.
    Yu. V. Nazarov, Superlattices Microst. 25,1221 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    O. Agam, I. Aleiner and A. Larkin, Phys. Rev. Lett., 85,3153 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    S. A. van Langen, M. Büttiker, Phys. Rev. B., 56,R1680 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    C.W.J. Beenakker, Rev. Mod. Phys., 69,731, (1997)ADSCrossRefGoogle Scholar
  31. 31.
    N.G. van Kampen, Stochastic processes in physcics and chemistry, Rev. and enl. eddition, Elsevier Scinece Publishes B.V., North-Holland, 1992Google Scholar
  32. 32.
    G.-L. Ingold, Yu. V. Nazarov, in Single Charge Tunneling, NATO ASI Series B: 294, ed. H. Grabert, M. H. Devoret (NewYork, 1992)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Dmitri A. Bagrets
    • 1
  • Yuli V. Nazarov
    • 1
  1. 1.Department of Applied Physics and Delft Institute of Microelectronics and SubmicrontechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations