Skip to main content

Noise Correlations, Entanglement, and Bell Inequalities

  • Chapter
Quantum Noise in Mesoscopic Physics

Part of the book series: NATO Science Series ((NAII,volume 97))

  • 1210 Accesses

Abstract

In condensed matter physics, the interactions between the constituents of the system are typically known. The building blocks are mere electrons, protons and neutrons, their collective behavior has been shown to lead to a variety of astonishing phenomena. Classic examples of such quantum correlated systems are superconductivity [1], superfluidity [2] and the fractional quantum Hall effect (FQHE) [3]. In these instances, the departure from usual behavior is often symptomatic of the presence of a non trivial ground state: a ground state which cannot be described by a systematic application of perturbation theory on the noninteracting system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.-G. de Gennes, Superconductivity of Metals and Alloys, Addison Wesley, 1989; J. R. Schrieffer, Theory of Superconductivity, Benjamin, 1964.

    Google Scholar 

  2. I. M. Khalatnikov and P. C. Hohenberg, An introduction to the Theory of Superfluidity, Advanced Book Classics, 2000.

    Google Scholar 

  3. R. B. Laughlin, Rev. Mod. Phys. 71, 863 (1999); H.L. Stornier, ibid., 875 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. N. Chtchelkatchev, G. Blatter, G. B. Lesovik, and T. Martin cond-mat/0112094.

    Google Scholar 

  5. A. Crépieux, R. Guyon, P. Devillard, and T. Martin, cond-mat/0209291.

    Google Scholar 

  6. J. Torrès and T. Martin, Eur. Phys. J. B 12,319 (1999).

    Article  ADS  Google Scholar 

  7. G.B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001).

    Article  ADS  Google Scholar 

  8. R. Hanbury-Brown and Q. R. Twiss, Nature 177,27 (1956).

    Article  Google Scholar 

  9. T. Gramespacher and M. Büttiker Phys. Rev. B 61,8125 (2000).

    Article  ADS  Google Scholar 

  10. J. Börlin, W. Belzig, and C. Bruder Phys. Rev. Lett. 88, 197001 (2002).

    Article  ADS  Google Scholar 

  11. M. Schechter, Y. Imry, and Y. Levinson Phys. Rev. B 64, 224513 (2001).

    Article  ADS  Google Scholar 

  12. F. Taddei and R. Fazio, Phys. Rev. B 65, 134522 (2002).

    Article  ADS  Google Scholar 

  13. P. Samuelsson and M. Büttiker, Phys. Rev. Lett. 89, 046601 (2002).

    Article  ADS  Google Scholar 

  14. V. Bouchiat, N. Chtchelkatchev, D. Feinberg, G.B. Lesovik, T. Martin, and J. Torres, condmat/0206005.

    Google Scholar 

  15. C. Texier and M. Büttiker, Phys. Rev. B 62,7454 (2000).

    Article  ADS  Google Scholar 

  16. V.T. Petrashov et al., Phys. Rev. Lett. 70,347 (1993); ibid., 74, 5268 (1995); A. Dimoulas et al., ibid. 74, 602 (1995); H. Courtois et al., ibid. 16, 130 (1996); F.B. Müller-Allinger et al., ibid. 84, 3161(2000).

    Article  ADS  Google Scholar 

  17. P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).

    Article  ADS  Google Scholar 

  18. E. Schröd inger, Naturwissenschaften 23, 807 (1935); ibid 23, 823 (1935); ibid. 23, 844 (1935); A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. Lett. 47, 777 (1935).

    Article  ADS  Google Scholar 

  19. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer-Verlag, Berlin, 2000).

    MATH  Google Scholar 

  20. P. Recher and D. Loss, Phys. Rev. B 65, 165327 (2002).

    Article  ADS  Google Scholar 

  21. D. Loss and D. P. DiVicenzo, Phys. Rev. A 57, 120 (1998).

    Article  ADS  Google Scholar 

  22. J.S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1965); J.S. Bell, Rev. Mod. Phys. 38, 447 (1966).

    Google Scholar 

  23. S. Datta, Electronic Transport in Mesoscopic systems (Cambridge University Press 1996); Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, 1997).

    Google Scholar 

  24. T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

    Article  ADS  Google Scholar 

  25. M. Büt tiker, Phys. Rev. Lett. 65, 2901 (1990); Phys. Rev. B 46, 12485 (1992).

    Article  ADS  Google Scholar 

  26. M. Henny et al., Science 296,284 (1999); W. Oliver et al., Science 296,299 (1999).

    Google Scholar 

  27. M.J.M. de Jong and C.W.J. Beenakker, Phys. Rev. B 49, 16070 (1994); B.A. Muzykantskii and D.E. Khmelnitskii, ibid. 50, 3982 (1994); M.P. Anantram and S. Datta, ibid. 53, 16 390 (1996); G. Lesovik, T. Martin, and J. Torrès, ibid 60,11935 (1999).

    Article  ADS  Google Scholar 

  28. T. Martin, Phys. Lett. A 220,137 (1996).

    Article  ADS  Google Scholar 

  29. Y. Gefen, J. Imry, and R. Landauer, Phys. Rev. Lett. 52, 139 (1984); M. Büttiker, Y. Imry, and M. Ya. Azbel, Phys. Rev. A 30, 1982 (1984).

    Article  ADS  Google Scholar 

  30. M. Büt tiker, NATO workshop on noise, Delft, Y. Nazarov and Y Blanter eds. (Kluwer 2002).

    Google Scholar 

  31. W. Belzig et al., NATO workshop on noise, Delft, Y. Nazarov and Y Blanter eds. (Kluwer 2002).

    Google Scholar 

  32. R. Melin and D. Feinberg, Eur. Phys. J. B 26,101 (2002).

    Google Scholar 

  33. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Ionicioiu, P. Zanardi, and F. Rossi, Phys. Rev. A 63, 050101 (2001).

    Article  ADS  Google Scholar 

  35. R. Werner and M. Wolf, quant-ph/0107093.

    Google Scholar 

  36. W.D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901 (2002).

    Article  ADS  Google Scholar 

  37. D.S. Saraga and D. Loss cond-mat/0205553.

    Google Scholar 

  38. J.F. Clauser and M.A. Home, Phys. Rev. D 10,526 (1974).

    Article  ADS  Google Scholar 

  39. Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 61,50 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  40. X.G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992); Adv. Phys. 44, 405 (1995).

    Article  ADS  Google Scholar 

  41. W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918).

    ADS  Google Scholar 

  42. C. L. Kane and M.P.A. Fisher, Phys. Rev. Lett. 72,724 (1994).

    Article  ADS  Google Scholar 

  43. C. de C. Chamon, D. E. Freed, and X.G. Wen, Phys. Rev. B 51, 2363 (1995-II).

    Article  ADS  Google Scholar 

  44. P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. Lett. 75, 2196 (1995).

    Article  ADS  Google Scholar 

  45. L. Saminadayar, D.C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79,2526 (1997).

    Article  ADS  Google Scholar 

  46. R. de-Picciotto et al., Nature 389,162 (1997).

    Article  ADS  Google Scholar 

  47. I. Safi, P. Devillard, and T. Martin, Phys. Rev. Lett. 86, 4628 (2001).

    Article  ADS  Google Scholar 

  48. M. Bockrath, D. H. Cobden, A. Rinzler, R.E. Smalley, L. Balents, and P. McEuen, Nature 397,598 (1999).

    Article  ADS  Google Scholar 

  49. C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 79,5086 (1997).

    Article  ADS  Google Scholar 

  50. R. Egger, A. Bachtold, M. Fuhrer, M. Bockrath, D. Cobden, and P. McEuen, in Interacting Electrons in Nanostructures, edited by R. Haug and H. Schoeller (Springer, 2001).

    Google Scholar 

  51. I. Safi, Ann. Phys. Fr. 22, 463 (1997).

    Article  ADS  Google Scholar 

  52. K.-V. Pham, M. Gabay and P. Lederer, Phys. Rev. B 61, 16397 (2000).

    Article  ADS  Google Scholar 

  53. R. Egger and A. Gogolin, Eur. Phys. J. B 3, 781 (1998).

    Article  Google Scholar 

  54. C. Chamon and D. E. Freed, Phys. Rev. B 60, 1842–1853 (1999).

    Article  ADS  Google Scholar 

  55. C. Bena et al., Phys. Rev. Lett. 89, 037901 (2002).

    Article  ADS  Google Scholar 

  56. I. Safi and H. Schulz, Phys. Rev. B 52, 17040 (1995); D. Maslov and M. Stone, Phys. Rev. B 52, 5539 (1995); V.V. Ponomarenko, Phys. Rev. B 52, 8666 (1995).

    Article  ADS  Google Scholar 

  57. O. Sauret, D. Feinberg, and T. Martin, cond-mat/0203215.

    Google Scholar 

  58. K.-I. Imura, K.-V. Pham, P. Lederer, and F. Piéchon, Phys. Rev. B 66, 035313 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martin, T., Crepieux, A., Chtchelkatchev, N. (2003). Noise Correlations, Entanglement, and Bell Inequalities. In: Nazarov, Y.V. (eds) Quantum Noise in Mesoscopic Physics. NATO Science Series, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0089-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0089-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1240-2

  • Online ISBN: 978-94-010-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics