Skip to main content

The Generation and Detection of Single and Entangled Electrons in Mesoscopic 2DEG Systems

  • Chapter
Quantum Noise in Mesoscopic Physics

Part of the book series: NATO Science Series ((NAII,volume 97))

  • 1205 Accesses

Abstract

The study of higher-order correlation functions of electrons and composite particles in mesoscopic systems has opened the field of quantum electron optics [1]. Since the 1950’s, probing higher-order correlation functions in photon and atomcavity systems has led to a more complete understanding of the fundamental quantum statistical [2, 3] and quantum mechanical phenomena resulting from entanglement [46], including violations of Bell’s inequality [79], quantum nondemolition measurements [10, 11], and teleportation [1214]. Many current-current correlation experiments have demonstrated that the quantum optical effects manifest in second-order correlation functions can also be observed clearly in mesoscopic electron systems [1524]. As with photon quantum optics [2527], this has led naturally to the investigation of higher-order correlation functions beyond the second order, the search for generating functions, and full counting statistics for particles in mesoscopic systems [2834].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. M. Blanter and M. Büttiker, Physics Reports 336, 1 (2000).

    ADS  Google Scholar 

  2. R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956).

    ADS  Google Scholar 

  3. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

    ADS  Google Scholar 

  4. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    ADS  MATH  Google Scholar 

  5. N. Bohr, Phys. Rev. 48, 696 (1935).

    ADS  MATH  Google Scholar 

  6. D. Böhm, Quantum Theory, Constable, London (1954).

    Google Scholar 

  7. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  8. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).

    ADS  Google Scholar 

  9. G. Weihs, et al., Phys. Rev. Lett. 81, 5039 (1998).

    MathSciNet  ADS  MATH  Google Scholar 

  10. P. Grangier, J. A. Levenson, and J.-P. Poizat, Nature 396, 537 (1998).

    ADS  Google Scholar 

  11. G. Nogues, et al., Nature 400,239 (1999).

    ADS  Google Scholar 

  12. D. Bouwmeester, et al., Nature 390, 575 (1997).

    ADS  Google Scholar 

  13. D. Boschi, et al., Phys. Rev. Lett. 80, 1121 (1998).

    MathSciNet  ADS  MATH  Google Scholar 

  14. A. Furusawa, et al., Science 282, 706 (1998).

    ADS  Google Scholar 

  15. M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995).

    ADS  Google Scholar 

  16. A. Kumar, et al., Phys. Rev. Lett. 76,2778 (1996).

    ADS  Google Scholar 

  17. A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76,3806 (1996).

    ADS  Google Scholar 

  18. R. J. Schoelkopf, et al., Phys. Rev. Lett. 78,3370 (1997).

    ADS  Google Scholar 

  19. L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79,2526 (1997).

    ADS  Google Scholar 

  20. R. de Picciotto, et al., Nature 389, 162 (1997).

    ADS  Google Scholar 

  21. R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391,263 (1998).

    ADS  Google Scholar 

  22. M. Henny, et al., Science 284,296 (1999).

    ADS  Google Scholar 

  23. W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Science 284,299 (1999).

    ADS  Google Scholar 

  24. E. Comforti, et al., Nature 416,515 (2002).

    ADS  Google Scholar 

  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, New York (1995).

    Google Scholar 

  26. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics, John Wiley and Sons, New York (1999).

    MATH  Google Scholar 

  27. C. W. J. Beenakker and H. Schomerus, Phys. Rev. Lett. 86,700 (2001).

    ADS  Google Scholar 

  28. L. S. Levitov and G. B. Lesovik, JETP 58, 230 (1993).

    Google Scholar 

  29. D. A. Ivanov and L. S. Levitov, JETP 58, 461 (1993).

    Google Scholar 

  30. B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 50, 3982 (1994).

    ADS  Google Scholar 

  31. H. Lee, L. S. Levitov, and A. Y. Yakovets, Phys. Rev. B 51, 4079 (1995).

    ADS  Google Scholar 

  32. W. Belzig and Y. V. Nazarov, Phys. Rev. Lett. 87, 067006 (2001).

    ADS  Google Scholar 

  33. W. Belzig and Y. V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001).

    ADS  Google Scholar 

  34. Y. V. Nazarov and D. A. Bagrets, Phys. Rev. Lett. 88, 196801 (2002).

    ADS  Google Scholar 

  35. C. H. Bennett and G. Brassard, in Proceedings of the IEEE Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 174, IEEE, New York (1984).

    Google Scholar 

  36. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    MathSciNet  ADS  MATH  Google Scholar 

  37. C. H. Bennett and D. P. DiVincenzo, Nature 404,247 (2000).

    ADS  Google Scholar 

  38. M. A. Rowe, et al., Nature 409,791 (2001).

    Google Scholar 

  39. E. Hagley, et al., Phys. Rev. Lett. 79, 1 (1997).

    ADS  Google Scholar 

  40. X. Maît re, et al., Phys. Rev. Lett. 79, 769 (1997).

    Google Scholar 

  41. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    ADS  Google Scholar 

  42. J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63, 085311 (2001).

    ADS  Google Scholar 

  43. G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).

    ADS  Google Scholar 

  44. C. H. W. Barnes, J. M. Shilton, and A. M. Robinson, Phys. Rev. B 62, 8410 (2000).

    ADS  Google Scholar 

  45. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).

    ADS  Google Scholar 

  46. G. B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001).

    ADS  Google Scholar 

  47. W. D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88,037901 (2002).

    ADS  Google Scholar 

  48. P. Recher and D. Loss, Phys. Rev. B 65, 165327 (2002).

    ADS  Google Scholar 

  49. D. S. Saraga and D. Loss, cond-mat/0205553 (2002).

    Google Scholar 

  50. V. Bouchiat, et al., cond-mat/0206005 (2002).

    Google Scholar 

  51. C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 89,037901 (2002).

    ADS  Google Scholar 

  52. D. Loss and E. V. Sukhorukov, Phys. Rev. Lett. 84,1035 (2000).

    ADS  Google Scholar 

  53. G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000).

    ADS  Google Scholar 

  54. W. D. Oliver, et al., in I. O. Kulik and R. Ellialtioglu (Eds.), Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectroncs, pp. xxx–xxx, Kluwer Academic Publishers, Dordrecht (2000).

    Google Scholar 

  55. O. Sauret, D. Feinberg, and T. Martin, cond-mat/0203215 (2002).

    Google Scholar 

  56. X. Maître, W. D. Oliver, and Y. Yamamoto, Physica E 6, 301 (2000).

    ADS  Google Scholar 

  57. A. Bertoni, et al., Phys. Rev. Lett. 84,5912 (2000).

    ADS  Google Scholar 

  58. R. Ionicioiu, P. Zanardi, and F. Rossi, Phys. Rev. A 63, 050101(R) (2001).

    ADS  Google Scholar 

  59. N. M. Chtchelkatchev, G. Blatter, G. B. Lesovik, and T. Martin, cond-mat/0112094 (2001).

    Google Scholar 

  60. J. Schliemann, et al., Phys. Rev. A 64, 022303 (2001).

    ADS  Google Scholar 

  61. M. Büt tiker, Phys. Rev. B 46, 12485 (1992).

    ADS  Google Scholar 

  62. T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

    ADS  Google Scholar 

  63. R. Landauer, Phil. Mag. 21, 863 (1970).

    ADS  Google Scholar 

  64. V. A. Khlus, Sov. Phys. JETP 66, 1243 (1987).

    Google Scholar 

  65. B. J. Van Wees, et al., Phys. Rev. Lett. 60, 848 (1988).

    ADS  Google Scholar 

  66. D. A. Wharam, et al., J. Phys. C 21, L209 (1988).

    ADS  Google Scholar 

  67. A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300 (1989).

    ADS  Google Scholar 

  68. G. B. Lesovik, JETP Lett. 49,592 (1989).

    ADS  Google Scholar 

  69. M. Büt tiker, Phys. Rev. Lett. 65, 2901 (1990).

    ADS  Google Scholar 

  70. B. Yurke and G. P. Kochanski, Phys. Rev. B 41,8184 (1990).

    ADS  Google Scholar 

  71. M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, Phys. Rev. A 53, R1209 (1996).

    ADS  Google Scholar 

  72. G. A. Rebka and R. V. Pound, Nature 180,1035 (1957).

    ADS  Google Scholar 

  73. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).

    ADS  Google Scholar 

  74. F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).

    ADS  Google Scholar 

  75. S. Oberholzer, et al., Physica E 6, 314 (2000).

    ADS  Google Scholar 

  76. H. Kiesel, A. Renz, and F. Hasselbach, Nature 418,392 (2002).

    ADS  Google Scholar 

  77. U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. Lett. 87, 216807 (2001).

    ADS  Google Scholar 

  78. R. C. Liu and Y. Yamamoto, Phys. Rev. B 49,10520 (1994).

    ADS  Google Scholar 

  79. R. E. Burgess, Discussions of the Faraday Society 28, 151 (1959).

    Google Scholar 

  80. A. W. Drake, Fundamentals of Applied Probability Theory, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  81. R. Hanbury Brown and R. Q. Twiss, Nature 178,1447 (1956).

    ADS  Google Scholar 

  82. P. Michler, et al., Science 290,2282 (2000).

    ADS  Google Scholar 

  83. C. Santori, et al, Phys. Rev. Lett. 86, 1502 (2001).

    ADS  Google Scholar 

  84. E. Brannon and H. I. S. Ferguson, Nature 178,481 (1956).

    ADS  Google Scholar 

  85. E. M. Purcell, Nature 178,1449 (1956).

    ADS  Google Scholar 

  86. R. Q. Twiss and R. Hanbury Brown, Nature 179,1128 (1957).

    ADS  Google Scholar 

  87. R. Q. Twiss, A. G. Little, and R. Hanbury Brown, Nature 180,324 (1957).

    ADS  Google Scholar 

  88. R. Q. Twiss and A. G. Little, Aust. J. Phys. 12,77 (1959).

    ADS  Google Scholar 

  89. G. Lesovik and R. Loosen, JETP Lett. 65, 295 (1997).

    ADS  Google Scholar 

  90. U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. B 62, 10637 (2000).

    ADS  Google Scholar 

  91. M. Büt tiker, Phys. Rev. B 45, 3807 (1992).

    ADS  Google Scholar 

  92. S. R. E. Yang, Solid State Comm. 81, 375 (1992).

    ADS  Google Scholar 

  93. R. C. Liu and Y. Yamamoto, Phys. Rev. B 50, 17411 (1994).

    ADS  Google Scholar 

  94. M. J. M. de Jong and C. W. J. Beenakker, in L. L. Sohn, L. P. Kouwenhoven, and G. Schön (Eds.), Mesoscopic Electron Transport, pp. 225–258, Kluwer, The Netherlands (1997).

    Google Scholar 

  95. J. Kim, O. Benson, H. Kan, and Y Yamamoto, Nature 397,500 (1999).

    ADS  Google Scholar 

  96. J. C. Egues, G. Burkard, and D. Loss, cond-mat/0204639 (2002).

    Google Scholar 

  97. J. C. Egues, G. Burkard, and D. Loss, cond-mat-0207392 (2002).

    Google Scholar 

  98. S. Nuttinck, et al., Jpn. J. Appl. Phys. 39, L655 (2000).

    ADS  Google Scholar 

  99. B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B 41, 8278 (1990).

    ADS  Google Scholar 

  100. J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 41, 7685 (1990).

    ADS  Google Scholar 

  101. G. L. Chen, et al., Phys. Rev. B 47, 4084 (1993).

    ADS  Google Scholar 

  102. G. Dresseihaus, Phys. Rev. 100,580 (1955).

    ADS  Google Scholar 

  103. E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  104. G. Feve, W. D. Oliver, M. Aranzana, and Y Yamamoto, Phys. Rev. B (2002).

    Google Scholar 

  105. T. Hassenkam, et al., Phys. Rev. B 55, 9298 (1997).

    ADS  Google Scholar 

  106. D. V. Averin and Y V. Nazarov, in H. Grabert and M. H. Devoret (Eds.), Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Vol. 294, Plenum Press, New York (1992).

    Google Scholar 

  107. E. V. Sukhorukov, G. Burkard, and D. Loss, Phys. Rev. B 63, 125315 (2001).

    ADS  Google Scholar 

  108. L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory of Scattering, Academic Press, New York (1967).

    Google Scholar 

  109. G. D. Mahan, Many Particle Physics, Plenum Press, New York (1990).

    Google Scholar 

  110. M. Kitagawa and M. Ueda, Phys. Rev. Lett. 67, 1852 (1991).

    ADS  Google Scholar 

  111. S. Tarucha, et al., Phys. Rev. Lett. 77,3613 (1996).

    ADS  Google Scholar 

  112. H. W. C. Postma, et al., Science 293,76 (2001).

    ADS  Google Scholar 

  113. M. Higashiwaki, et al., Jpn. J. Appl. Phys. 35, L606 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oliver, W.D., Feve, G., Kim, N.Y., Yamaguchi, F., Yamamoto, Y. (2003). The Generation and Detection of Single and Entangled Electrons in Mesoscopic 2DEG Systems. In: Nazarov, Y.V. (eds) Quantum Noise in Mesoscopic Physics. NATO Science Series, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0089-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0089-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1240-2

  • Online ISBN: 978-94-010-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics