Quantum Noise in Mesoscopic Physics pp 241-274 | Cite as

# Shot Noise for Entangled and Spin-Polarized Electrons

## Abstract

We review our recent contributions on shot noise for entangled electrons and spinpolarized currents in novel mesoscopic geometries. We first discuss some of our recent proposals for electron entanglers involving a superconductor coupled to a double dot in the Coulomb blockade regime, a superconductor tunnel-coupled to Luttinger-liquid leads, and a triple-dot setup coupled to Fermi leads. We briefly survey some of the available possibilities for spin-polarized sources. We use the scattering approach to calculate current and shot noise for spin-polarized currents and entangled/unentangled electron pairs in a novel beam-splitter geometry with a *local* Rashba spinorbit (s-o) interaction in the incoming leads. For single-moded incoming leads, we find *continuous* bunching and antibunching behaviors for the *entangled* pairs — triplet and singlet — as a function of the Rashba rotation angle. In addition, we find that unentangled triplets and the entangled one exhibit distinct shot noise; this should allow their identification via noise measurements. Shot noise for spin-polarized currents shows sizable oscillations as a function of the Rashba phase. This happens only for electrons injected perpendicular to the Rashba rotation axis; spin-polarized carriers along the Rashba axis are noiseless. The Rashba coupling constant α is directly related to the Fano factor and could be extracted via noise measurements. For incoming leads with s-o induced interbandcoupled channels, we find an additional spin rotation for electrons with energies near the crossing of the bands where interband coupling is relevant. This gives rise to an additional modulation of the noise for both electron pairs and spin-polarized currents. Finally, we briefly discuss shot noise for a double dot near the Kondo regime.

## Keywords

Beam Splitter Shot Noise Cooper Pair Fano Factor Luttinger Liquid## Preview

Unable to display preview. Download preview PDF.

## References

- 1.W. Schottky, Ann. Phys. 57 (1918) 541.CrossRefGoogle Scholar
- 2.Ya. M. Blanter and M. Büttiker, Phys. Rep.
**336**, 1 (2000).ADSCrossRefGoogle Scholar - 3.D. Loss and E.V. Sukhorukov, Phys. Rev. Lett.
**84**, 1035 (2000), cond-mat/9907129.ADSCrossRefGoogle Scholar - 4.G. Burkard, D. Loss, and E.V. Sukhorukov, Phys. Rev. B
**61**,R16303 (2000), condmat/9906071. For an early account see D. P. DiVincenzo and D. Loss, J. Magn. Magn. Mat.**200**, 202 (1999), cond-mat/9901137.ADSCrossRefGoogle Scholar - 5.W. D. Oliver
*et al.*, in*Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics*, vol. 559 of NATO ASI Series C: Mathematical and Physical Sciences, eds. I. O. Kulik and R. Ellialtioglu (Kluwer, Dordrecht, 2000), pp. 457-466.Google Scholar - 6.F. Taddei and R. Fazio, Phys. Rev. B
**65**, 075317 (2002).ADSCrossRefGoogle Scholar - 7.J. C. Egues, G. Burkard, and D. Loss, to appear in the Journal of Superconductivity; condmat/0207392.Google Scholar
- 8.J. C. Egues, G. Burkard, and D. Loss, Phys. Rev. Lett.
**89**, 176401 (2002); cond-mat/0204639.ADSCrossRefGoogle Scholar - 9.
- 10.F. G. Brito, J. F. Estanislau, and J. C. Egues, J. Magn. Magn. Mat.
**226-230**,457 (2001).ADSCrossRefGoogle Scholar - 11.K.M. Souza, J. C. Egues, and A. P. Jauho, cond-mat/0209263.Google Scholar
- 12.J. J. Sakurai,
*Modern Quantum Mechanics*, San Fu Tuan, Ed., (Addison-Wesley, New York, 1994); (Ch. 3, p. 223). See also J. I. Cirac, Nature**413**, 375 (2001).Google Scholar - 13.
*Semiconductor Spintronics and Quantum Computation*, Eds. D. D. Awschalom, D. Loss, and N. Samarth (Springer, Berlin, 2002).Google Scholar - 14.P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. B
**63**,165314 (2001); cond-mat/0009452.ADSCrossRefGoogle Scholar - 15.D. S. Saraga and D. Loss, cond-mat/0205553.Google Scholar
- 16.R. Fiederling
*et al.*, Nature**402**, 787 (1999); Y. Ohno*et al.*, Nature**402**, 790 (1999).ADSCrossRefGoogle Scholar - 17.See J. C. Egues Phys. Rev. Lett.
**80**, 4578 (1998) and J. C. Egues*et al.*Phys. Rev. B**64**,195319 (2001) for*ballistic*spin filtering in semimagnetic heterostruc ures.ADSCrossRefGoogle Scholar - 18.P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett.
**85**, 1962 (2000), condmat/0003089.ADSCrossRefGoogle Scholar - 19.P. Recher and D. Loss, Phys. Rev. B
**65**, 165327 (2002), cond-mat/0112298.ADSCrossRefGoogle Scholar - 20.V.N. Golovach and D. Loss, cond-mat/0109155.Google Scholar
- 21.
- 22.M. Henny
*et al.*, Science**284**,296 (1999); W. D. Oliver*et al.*, Science**284**, 299 (1999). See also M. Büttiker, Science**284**, 275 (1999).ADSCrossRefGoogle Scholar - 23.G. Fève
*et al.*(cond-mat/0108021) also investigate transport in a beam splitter configuration. These authors assume a “global” s-o interaction and formulate the scattering approach using Rashba states in single-moded leads.Google Scholar - 24.S. Datta and B. Das, Appl. Phys. Lett.
**56**, 665 (1990).ADSCrossRefGoogle Scholar - 25.L.P. Kouwenhoven, G. Schön, L.L. Sohn, Mesoscopic Electron Transport, NATO ASI Series E: Applied Sciences-Vol.345, 1997, Kluwer Academic Publishers, Amsterdam.Google Scholar
- 26.D. Loss and D. P. DiVincenzo, Phys. Rev. A
**57**, 120 (1998), cond-mat/9701055.ADSCrossRefGoogle Scholar - 27.M.-S. Choi, C. Bruder, and D. Loss, Phys. Rev. B
**62**, 13569 (2000); cond-mat/0001011.ADSCrossRefGoogle Scholar - 28.C. Bena, S. Vishveshwara, L. Balents, and M.P.A. Fisher, Phys. Rev. Lett.
**89**, 037901 (2002).ADSCrossRefGoogle Scholar - 29.G.B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B
**24**, 287 (2001).ADSCrossRefGoogle Scholar - 30.R. Mélin, cond-mat/0105073.Google Scholar
- 31.V. Bouchiat
*et al.*, cond-mat/0206005.Google Scholar - 32.W.D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett.
**88**, 037901 (2002).ADSCrossRefGoogle Scholar - 33.S. Bose and D. Home, Phys. Rev. Lett.
**88**, 050401 (2002).MathSciNetADSCrossRefGoogle Scholar - 34.In principle, an entangler producing entangled triplets or
*orbital*entanglement would also be desirable.Google Scholar - 35.This condition reflects energy conservation in the Andreev tunnelling event from the SC to the two QDs.Google Scholar
- 36.This reduction factor of the current
*I*_{2}compared to the resonant current*I*_{1}reflects the energy cost in the virtual states when two electrons tunnel via the same QD into the same Fermi lead and are given by*U*and/or Δ. Since the lifetime broadenings γ_{1}and γ_{2}of the two QDs 1 and 2 are small compared to*U*and Δ such processes are suppressed.Google Scholar - 37.P. Recher and D. Loss, Journal of Superconductivity: Incorporating Novel Magnetism 15(1): 49–65, February 2002; cond-mat/0205484.Google Scholar
- 38.A.F. Volkov, P.H.C. Magne, B.J. van Wees, and T.M. Klapwijk, Physica C
**242**, 261 (1995).ADSCrossRefGoogle Scholar - 39.M. Kociak, A.Yu. Kasumov, S. Guron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, and H. Bouchiat, Phys. Rev. Lett.
**86**, 2416 (2001).ADSCrossRefGoogle Scholar - 40.
- 41.R. Egger and A. Gogolin, Phys. Rev. Lett.
**79**, 5082 (1997); R. Egger, Phys. Rev. Lett.**83**, 5547 (1999).ADSCrossRefGoogle Scholar - 42.C. Kane, L. Balents, and M.P.A. Fisher, Phys. Rev. Lett.
**79**, 5086 (1997).ADSCrossRefGoogle Scholar - 43.L. Balents and R. Egger, Phys. Rev. B,
**64**035310 (2001).ADSCrossRefGoogle Scholar - 44.For a review see e.g. HJ. Schulz, G. Cuniberti, and P. Pieri, cond-mat/9807366; or J. von Delft and H. Schoeller, Annalen der Physik, Vol.
**4**, 225-305 (1998).Google Scholar - 45.The interaction dependent constants
*A*_{b}are of order one for not too strong interaction between electrons in the LL but are decreasing when interaction in the LL-leads is increased [19]. Therefore in the case of substantially strong interaction as it is present in metallic carbon nanotubes, the pre-factors*A*_{b}can help in addition to suppress*I*_{2}Google Scholar - 46.Since γ
_{p}-> γ_{P+}, it is more probable that two electrons coming from the same Cooper pair travel in the same direction than into different directions when injected into the same LL-lead.Google Scholar - 47.In order to have exclusively singlet states as an input for the beamsplitter setup, it is important that the LL-leads return to their spin ground-state after the injected electrons have tunnelled out again into the Fermi leads. For an infinite LL, spin excitations are gapless and therefore an arbitrary small bias voltage μ between the SC and the Fermi liquids gives rise to spin excitations in the LL. However, for a realistic finite size LL (e.g. a nanotube), spin excitations are gapped on an energy scale ∼ ħ
*VF/L*, where*L*is the length of the LL. Therefore, if κ_{B}T,μ < ħ*VF/L*only singlets can leave the LL again to the Fermi leads, since the total spin of the system has to be conserved. For metallic carbon nanotubes, the Fermi velocity is ∼ 10^{6}m/s, which gives an excitation gap of the order of a few meV for*L*∼ μm; this is large enough for our regime of interest.Google Scholar - 48.A singlet-triplet transition for the ground state of a quantum dot can be driven by a magnetic field; see S. Tarucha
*et al.*, Phys. Rev. Lett.**84**,2485 (2000).ADSCrossRefGoogle Scholar - 49.This symmetric setup of the charging energy
*U*is obtained when the gate voltages are tuned such that the total Coulomb charging energies in*D*_{c}are equal with zero or two electrons.Google Scholar - 50.K. Blum,
*Density Matrix Theory and Applications*(Plenum, New York, 1996).MATHGoogle Scholar - 51.T.H. Oosterkamp
*et al.*, Nature (London)**395**,873 (1998); T. Fujisawa*et al.*, Science**282**,932 (1998).ADSCrossRefGoogle Scholar - 52.J.M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett.
**80**,4313 (1998).ADSCrossRefGoogle Scholar - 53.I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and D. D. Awschalom, Phys. Rev. Lett.
**84**,1015 (2000); I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, Nature**411**,770 (2001).ADSCrossRefGoogle Scholar - 54.M. Johnsson and R. H. Silsbee, Phys. Rev. Lett.
**55**,1790 (1985); M. Johnsson and R. H. Silsbee, Phys. Rev. B**37**, 5326 (1988); M. Johnsson and R. H. Silsbee, Phys. Rev. B**37**, 5712 (1988).ADSCrossRefGoogle Scholar - 55.F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature
**410**, 345 (2001); F. J. Jedema, H. B. Heersche, J. J. A. Baselmans, and B. J. van Wees, Nature**416**, 713 (2002).ADSCrossRefGoogle Scholar - 56.In addition, for fully spin-polarized leads the device can act as a single spin memory with read-in and read-out capabilities if the dot is subjected to a ESR source.Google Scholar
- 57.This is true as long as the Zeeman splitting in the leads is much smaller than their Fermi energies.Google Scholar
- 58.
- 59.
- 60.N.M. Chtchelkatchev, G. Blatter, G.B. Lesovik, and T. Martin, cond-mat/0112094.Google Scholar
- 61.M. Büttiker,
*Phys. Rev. B***46**, 12485 (1992); Th. Martin and R. Landauer, Phys. Rev. B**45**,1742 (1992). For a recent comprehensive review on shot noise, see Ref. [2].ADSCrossRefGoogle Scholar - 62.Our noise definition here differs by a factor of two from that in the review article by Blanter and Büttiker (Ref. [2]); these authors define their power spectral density of the noise with a coefficient two in front (see definition following Eq. (49) and footnote 4 in Ref. [2]). We use a standard Fourier transform (no factor of two in front) to define the noise spectral density.Google Scholar
- 63.For a discrete energy spectrum we need to insert a density-of-states factor
*v*in the current and noise definitions; see Ref. [4].Google Scholar - 64.Note that the uncorrelated-beam case here refers to a beam splitter configuration with only one of the incoming leads “open”. This is an important point since a beam splitter is noiseless for (unpolarized) uncorrelated beams in both incoming leads.Google Scholar
- 65.G. Engels
*et al.*Phys. Rev. B**55**, R1958 (1997); J. Nitta*et al.*, Phys. Rev. Lett.**78**, 1335 (1997); D. Grundler Phys. Rev. Lett.**84**,6074 (2000); Y. sato*et al.*J. Appl. Phys.**89**,8017 (2001).ADSCrossRefGoogle Scholar - 66.A. V. Moroz and C. H. W. Barnes, Phys. Rev. B
**60**, 14272 (1999); F. Mireles and G. Kirczenow,*ibid.***64**,024426 (2001); M. Governale and U. Zülicke, Phys. Rev. B**66**073311 (2002).ADSCrossRefGoogle Scholar - 67.G. Lommer
*et al.*, Phys. Rev. Lett.**60**,728 (1988), G. L. Chen*et al.*, Phys. Rev. B**47**, 4084 (R) (1993), E. A. de Andrada e Silva*et al.*, Phys. Rev. B**50**,8523 (1994), and F. G. Pikus and G. E. Pikus Phys. Rev. B**51**,16928 (1995).ADSCrossRefGoogle Scholar - 68.Yu. A. Bychkov and E. I. Rashba, JETP Lett.
**39**,78 (1984).ADSGoogle Scholar - 69.L. W. Molenkamp
*et al.*, Phys. Rev. B**64**, R121202 (2001); M. H. Larsen*et al.*,*ibid.***66**,033304 (2002).ADSCrossRefGoogle Scholar - 70.The Rashba-active region in lead 1 is (supposed to be)
*electrostatically*induced. This implies that there is no band-gap mismatch between the Rashba region and the adjacent regions in lead 1 due to materials differences. There is, however, a small mismatch arising from the Rashba energy ∈_{r}; this is the amount the Rashba bands are shifted down with respect to the bands in the absence of s-o orbit in the channel. Since typically ∈_{R}≪ ε_{F}, we find that the transmission is indeed very close to unity (see estimate in Ref. [8]).Google Scholar - 71.Note that the velocity operator is not diagonal in the presence of the Rashba interaction.Google Scholar
- 72.J. C. Egues, G. Burkard, and D. Loss, cond-mat/0209692.Google Scholar
- 73.In the absence of the s-o interaction, we assume the wire has two sets of spin-degenerate parabolic bands for each κ vector. In the presence of s-o interaction but neglecting s-o induced interband coupling, there is a one-to-one correspondence between the parabolic bands with no spin orbit and the Rashba bands; hence they can both be labelled by the same indices.Google Scholar
- 74.N. W. Ashcroft and N. D. Mermin,
*Solid State Physics*, Ch. 9. (Holt, Rinehart, and Winston, New York, 1976).Google Scholar - 75.G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B
**62**, R4790 (2000).ADSCrossRefGoogle Scholar - 76.L. P. Kouwenhoven,
*private communication*.Google Scholar - 77.L. I. Glazman and M.E. Raikh, JETP Lett.
**47**, 452 (1988); T. K. Ng and P. A. Lee, Phys. Rev. Lett.**61**, 1768 (1988).ADSGoogle Scholar - 78.Y. Meir and A. Golub, Phys. Rev. Lett.
**88**, 116802 (2002).ADSCrossRefGoogle Scholar - 79.F. Yamaguchi and K. Kawamura, Physica B
**227**, 116 (1996).ADSCrossRefGoogle Scholar - 80.A. Schiller and S. Hershfield, Phys. Rev. B
**58**, 14978 (1998).ADSCrossRefGoogle Scholar - 81.G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B
**59**, 2070 (1999), cond-mat/9808026.ADSCrossRefGoogle Scholar - 82.W. Izumida and O. Sakai, Phys. Rev. B
**62**, 10260 (2000).ADSCrossRefGoogle Scholar - 83.A. Georges and Y. Meir, Phys. Rev. Lett.
**82**, 3508 (1999).ADSCrossRefGoogle Scholar - 84.T. Aono and M. Eto, Phys. Rev. B
**63**, 125327 (2001).ADSCrossRefGoogle Scholar - 85.I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B
**52**, 9528 (1995).ADSCrossRefGoogle Scholar