Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 97))

Abstract

Linear response theory describes quantum measurement with an arbitrary detector weakly coupled to a measured system. This description produces generic quantitative relation characterizing the detector that is analogous to the fluctuation-dissipation theorem for equilibrium systems. The detector characteristic obtained in this way shows how effective is the trade-off between the back-action dephasing and information acquisition by the detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quantum theory and measurement, Ed. by J.A. Wheeler and W.H. Zurek (Princeton Univ. Press, 1983).

    Google Scholar 

  2. Quantum optics, experimental gravity, and measurement theory, Ed. by P. Meystre and M.O. Scully (Plenum, NY, 1983).

    Google Scholar 

  3. Sixty two years of uncertainty: historical, philosophical, and physical inquiries into the foundations of quantum mechanics, Ed. by A.I. Miller (Plenum, NY, 1990).

    Google Scholar 

  4. V.B. Braginsky and F.Ya. Khalili, Quantum measurement, (Cambridge, 1992).

    Google Scholar 

  5. M.B. Mensky, Quantum measurement and decoherence: models and phenomenology (Kluwer, Dordrecht, 2000).

    Google Scholar 

  6. D.V. Averin, in: “Exploring the quantum/classical frontier: recent advances in macroscopic quantum phenomena”, Ed. by J.R. Friedman and S. Han, (Nova Publishes, Hauppauge, NY, 2002), p. 441; cond-mat/0004364.

    Google Scholar 

  7. M. Field, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, and D.G. Hasko, Phys. Rev. Lett. 70, 1311 (1993).

    Article  ADS  Google Scholar 

  8. M. Kataoka, C.J.B. Ford, G. Faini, D. Mailly, M.Y. Simmons, D.R. Mace, C.-T. Liang, and D. A. Ritchie, Phys. Rev. Lett. 83, 160 (1999).

    Article  ADS  Google Scholar 

  9. D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Phys. Rev. Lett. 84, 5820 (2000).

    Article  ADS  Google Scholar 

  10. S.A. Gurvitz, Phys. Rev. B 56, 15215 (1997).

    Article  ADS  Google Scholar 

  11. A.N. Korotkov, Phys. Rev. B 60, 5737 (1999).

    Article  ADS  Google Scholar 

  12. Yu. Makhlin, G. Schön, and A. Shnirman, Phys. Rev. Lett. 85, 4578 (2000).

    Article  ADS  Google Scholar 

  13. D.V. Averin, in: “Macroscopic Quantum Coherence and Quantum Computing” Ed. by D.V. Averin, B. Ruggiero, and P. Silvestrini, (Kluwer, 2001), p. 399; cond-mat/0010052.

    Google Scholar 

  14. M.H. Devoret and R.J. Schoelkopf, Nature 406,1039 (2000).

    Article  Google Scholar 

  15. G. Johansson, A. Käck, and G. Wendin, Phys. Rev. Lett. 88, 046802 (2002).

    Article  ADS  Google Scholar 

  16. A.B. Zorin, Phys. Rev. Lett. 76, 4408 (1996).

    Article  ADS  Google Scholar 

  17. A.A. Clerk, S.M. Girvin, A.K. Nguyen, and A.D. Stone, Phys. Rev. Lett. 89, 176804 (2002).

    Article  ADS  Google Scholar 

  18. D.V. Averin, Fortschrit. der Physik 48, 1055 (2000).

    Article  ADS  Google Scholar 

  19. S. Pilgram and M. Büttiker Phys. Rev. Lett. 89, 200401 (2002).

    Article  ADS  Google Scholar 

  20. S.-X. Li, Y. Yu, Y. Zhang, W. Qiu, S. Han, and Z. Wang, Phys. Rev. Lett. 89, 098301 (2002).

    Article  ADS  Google Scholar 

  21. U. Weiss, Quantum dissipative systems, (World Scientific, 1999).

    Google Scholar 

  22. A.N. Korortkov, cond-mat/0209629.

    Google Scholar 

  23. A.N. Korotkov and D.V. Averin, Phys. Rev. B 64,165310 (2001).

    Article  ADS  Google Scholar 

  24. L.N. Bulaevskii, M. Hruska, G. Ortiz, cond-mat/0212049.

    Google Scholar 

  25. V.V. Danilov, K.K. Likharev, and A.B. Zorin, IEEE Trans. Magn. 19, 572 (1983).

    Article  ADS  Google Scholar 

  26. C.M. Caves, Phys. Rev. D 26, 1817 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Averin, D.V. (2003). Linear Quantum Measurements. In: Nazarov, Y.V. (eds) Quantum Noise in Mesoscopic Physics. NATO Science Series, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0089-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0089-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1240-2

  • Online ISBN: 978-94-010-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics