Skip to main content

Reversing the Sign of Current-Current Correlations

  • Chapter
Quantum Noise in Mesoscopic Physics

Part of the book series: NATO Science Series ((NAII,volume 97))

Abstract

Dynamic fluctuation properties of mesoscopic electrical conductors provide additional information not obtainable through conductance measurement. Indeed, over the last decade, experimental and theoretical investigations of current fluctuations have successfully developed into an important subfield of mesoscopic physics. A detailed report of this development is presented in the review by Blanter and Büttiker [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ya. M. Blanter and M. Büttiker, Physics Reports, 336, 1–166 (2000).

    Article  ADS  Google Scholar 

  2. R. Hanbury Brown and R.Q. Twiss, Nature 177, 27 (1956)

    Article  Google Scholar 

  3. R. Hanbury Brown and R. Q. Twiss, Nature 178, 1447 (1956).

    Article  ADS  Google Scholar 

  4. A. M. Steinberg, P. G. Kwiat, and R. Y Chiao, Phys. Rev. Lett. 71, 708 (1993).

    Article  ADS  Google Scholar 

  5. E. M. Prucell, Nature 178, 1449 (1956).

    Article  ADS  Google Scholar 

  6. M. Büt tiker, Phys. Rev. Lett. 65, 2901 (1990).

    Article  ADS  Google Scholar 

  7. M. Büt tiker, Physica B175, 199 (1991).

    ADS  Google Scholar 

  8. M. Büt tiker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  ADS  Google Scholar 

  9. M. Büt tiker, IBM J. Res. Developm. 32, 317 (1988).

    Article  Google Scholar 

  10. V. A. Khlus, Zh. Ék sp. Teor. Fiz. 93 (1987) 2179 [Sov. Phys. JETP 66 (1987) 1243].

    Google Scholar 

  11. G. B. Lesovik, Pis’ma Zh. Éksp. Teor. Fiz. 49 (1989) 513 [JETP Lett. 49 (1989) 592].

    Google Scholar 

  12. M. Büttiker, Phys. Rev. B 46, 12485 (1992).

    Article  ADS  Google Scholar 

  13. R. Landauer and Th. Martin, Physica B 175 (1991) 167; T. Martin and R. Landauer, Phys. Rev. B 45(4), 1742 (1992).

    Google Scholar 

  14. M. Büt tiker, Phys. Rev. Lett. 68, 843, (1992).

    Article  ADS  Google Scholar 

  15. T. Gramespacher and M. Büttiker, Phys. Rev. Lett. 81, 2763 (1998).

    Article  ADS  Google Scholar 

  16. Ya. M. Blanter and M. Büttiker, Phys. Rev. B 55, 2127 (1997).

    ADS  Google Scholar 

  17. S. A. van Langen and M. Büttiker, Phys. Rev. B 56, 1680 (1997).

    ADS  Google Scholar 

  18. E. V. Sukhorukov and D. Loss, Phys. Rev. B 59, 13054 (1999).

    ADS  Google Scholar 

  19. W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Science 284, 299 (1999).

    Article  ADS  Google Scholar 

  20. M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, and C. Schönenberger, Science 284, 296 (1999).

    Article  ADS  Google Scholar 

  21. S. Oberholzer, M. Henny, C. Strunk, C. Schonenberger, T. Heinzel, K. Ensslin, and M. Holland, Physica E 6, 314 (2000).

    Article  ADS  Google Scholar 

  22. T. Kodama, N. Osakabe, J. Endo, and A. Tonomura, K. Ohbayashi, T. Urakami, S. Ohsuka, H. Tsuchiya, Y. Tsuchiya and Y. Uchikawa Phys. Rev. A 57, 2781 (1998).

    Article  ADS  Google Scholar 

  23. H. Kiesel, A. Renz and F. Hasselbach, Nature 418, 392 (2002).

    Article  ADS  Google Scholar 

  24. C. Texier and M. Büttiker, Phys. Rev. B 62, 7454 (2000).

    Article  ADS  Google Scholar 

  25. M. Büt tiker, Phys. Rev. B 32, 1846 (1985).

    Article  ADS  Google Scholar 

  26. M. Büt tiker, Phys. Rev. B 33, 3020 (1986).

    Article  ADS  Google Scholar 

  27. C. W. J. Beenakker and M. Büttiker, Phys. Rev. B46, 1889 (1992).

    ADS  Google Scholar 

  28. R. C. Liu and Y Yamamoto, Phys. Rev. B50, 17411 (1994).

    ADS  Google Scholar 

  29. M. J. M. de Jong and C. W. J. Beenakker, Physica A 230, 219 (1996).

    Article  ADS  Google Scholar 

  30. X. Jehl, M. Sanquer, R. Calemczuk and D. Mailly, Nature (London) 405 50 (2000).

    Article  ADS  Google Scholar 

  31. A.A. Kozhevnikov, R.J. Shoelkopf, and D.E. Prober, Phys. Rev. Lett. 84 3398 (2000).

    Article  ADS  Google Scholar 

  32. X. Jehl and M. Sanquer, Phys. Rev. B 63, 052511 (2001).

    Article  ADS  Google Scholar 

  33. B. Reulet, A. A. Kozhevnikov, D. E. Prober, W. Belzig, Yu. V. Nazarov, ”Phase Sensitive Shot Noise in an Andreev Interferometer”, cond-mat/0208089

    Google Scholar 

  34. F. Lefloch, C. Hoffmann, M. Sanquer and D. Quirion, ”Doubled Full Shot Noise in Quantum Coherent Superconductor-Semiconductor Junctions”, cond-mat/0208126

    Google Scholar 

  35. M. P. Anantram and S. Datta, Phys. Rev. B 53, 16390 (1996).

    ADS  Google Scholar 

  36. Th. Martin, Phys. Lett. A220, 137 (1966).

    ADS  Google Scholar 

  37. J. Torrs and Th. Martin, Eur. Phys. J. B 12, 319 (1999).

    ADS  Google Scholar 

  38. T. Gramespacher and M. Büttiker, Phys. Rev. B 61, 8125 (2000).

    ADS  Google Scholar 

  39. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001); C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 89, 037901 (2002).

    ADS  Google Scholar 

  40. J. Börlin, W. Belzig, and C. Bruder, Phys. Rev. Lett. 88, 197001 (2002).

    Article  ADS  Google Scholar 

  41. P. Samuelsson and M. Büttiker, Phys. Rev. Lett. 89, 046601 (2002).

    Article  ADS  Google Scholar 

  42. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    MathSciNet  ADS  Google Scholar 

  43. M. Büt tiker, Phys. Rev. B 38, 9375 (1988).

    ADS  Google Scholar 

  44. M. I. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75 3340 (1995).

    Article  ADS  Google Scholar 

  45. A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 76, 2778 (1996).

    Article  ADS  Google Scholar 

  46. B. J. van Wees, E. M. M. Willems, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. Williamson, C. T. Foxon, and J. Harris, Phys. Rev. B 39, 8066 (1989).

    ADS  Google Scholar 

  47. S. Komiyama, H. Hirai, S. Sasa, and T. Fujii, Solid State Commun. 73, 91 (1990).

    Article  ADS  Google Scholar 

  48. B. W. Alphenaar, P. L. McEuen, R. G. Wheeler, and R. N. Sacks, Phys. Rev. Lett. 64, 677 (1990).

    Article  ADS  Google Scholar 

  49. G. Müller, D. Weiss, A. V. Khaetskii, K. von Klitzing, S. Koch, H. Nickel, W. Schlapp, and R. Lösch, Phys. Rev. B 45, 3932 (1992).

    ADS  Google Scholar 

  50. K. E. Nagaev, Phys. Lett. A 169, 103 (1992).

    Article  ADS  Google Scholar 

  51. K. E. Nagaev, ”Boltzmann-Langevin approach to higher-order current correlations in diffusive metal contacts”, cond-mat/0203503

    Google Scholar 

  52. K. E. Nagaev, P. Samuelsson and S. Pilgram, ”Cascade approach to current fluctuations in a chaotic cavity”, (unpublished), cond-mat/0208147

    Google Scholar 

  53. M. Büt tiker, ”Noise in Mesoscopic Conductors and Capacitors”, Proceedings of the 13th International Conference on Noise in Physical Systems and 1/f-Fluctuations, eds. V. Bareikis and R. Katilius, (Word Scientific, Singapore, 1995). p. 35–40.

    Google Scholar 

  54. M. Büt tiker, in ”Resonant Tunneling in Semiconductors: Physics and Applications”, edited by L. L. Chang, E. E. Mendez, and C. Tejedor, (Plenum Press, New York, 1991). p. 213–227.

    Google Scholar 

  55. Ya. M. Blanter, F.W.J. Hekking, and M. Büttiker, Phys. Rev. Lett. 81, 1925 (1998).

    Article  ADS  Google Scholar 

  56. I. Safi, Ann. Phys. (Paris) 22, 463 (1997).

    ADS  Google Scholar 

  57. M. Büt tiker, J. Phys. Condensed Matter 5, 9361 (1993).

    Article  ADS  Google Scholar 

  58. M. Büttiker (unpublished).

    Google Scholar 

  59. A. Crepieux, R. Guyon, P. Devillard and T. Martin, (unpublished), cond-mat/0209291

    Google Scholar 

  60. M. Büttiker, H. Thomas, and A. Prêtre, Phys. Lett. A180, 364 (1993).

    ADS  Google Scholar 

  61. E. P. Wigner, Phys. Rev. 98, 145 (1955); F. Smith, Phys. Rev. 118, 349 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. J. M. Jauch and J. P. Marchand, Helv. Physica Acta 40, 217 (1967).

    MathSciNet  Google Scholar 

  63. Since we are interested in the charge density within a specific region the derivative should be taken with respect to the local (electrostatic) potential, (see Eq. (38)) and not energy. The difference is important in situations where a WKB-approximation does not apply. See also M. Büttiker, Phys. Rev. B27, 6178 (1983).

    Google Scholar 

  64. M. H. Pedersen, S. A. van Langen, M. Büt tiker, Phys. Rev. B57, 1838 (1998).

    ADS  Google Scholar 

  65. A. M. Martin and M. Büttiker, Phys. Rev. Lett. 84, 3386 (2000).

    Article  ADS  Google Scholar 

  66. M. Büt tiker, J. Math. Phys. 37, 4793 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  67. M. Büt tiker, in ”Quantum Mesoscopic Phenomena and Mesoscopic Devices”, edited by I. O. Kulik and R. Ellialtioglu, (Kluwer, Academic Publishers, Dordrecht, 2000). Vol. 559, p. 211: cond-mat/9911188

    Google Scholar 

  68. M. Büt tiker and A. M. Martin, Phys. Rev. B61, 2737 (2000).

    ADS  Google Scholar 

  69. G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313 (2001).

    ADS  Google Scholar 

  70. S. Pilgram and M. Büttiker, (unpublished). cond-mat/0203340.

    Google Scholar 

  71. M. Büttiker, Y. Imry and M. Ya. Azbel, Phys. Rev. A 30, 1982 (1984).

    ADS  Google Scholar 

  72. G. B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001).

    ADS  Google Scholar 

  73. K. Nagaev and M. Büttiker, Phys. Rev. B 63 081301, (2001).

    ADS  Google Scholar 

  74. G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61, 16303 (2000).

    ADS  Google Scholar 

  75. F. Taddei, and R. Fazio, Phys. Rev. B 65, 134522 (2002).

    ADS  Google Scholar 

  76. P. Recher and D. Loss, ”Superconductor coupled to two Luttinger liquids as an entangler for electron spins”, cond-mat/0204501

    Google Scholar 

  77. P. Samuelsson and M. Büttiker, ”Semiclassical theory of current correlations in chaotic dotsuperconductor systems”, (unpublished), cond-mat/0207585

    Google Scholar 

  78. Private communication by H. Schomerus

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Büttiker, M. (2003). Reversing the Sign of Current-Current Correlations. In: Nazarov, Y.V. (eds) Quantum Noise in Mesoscopic Physics. NATO Science Series, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0089-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0089-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1240-2

  • Online ISBN: 978-94-010-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics