Active and Passive Sensing of Aerosol from Space

  • Matvienko G. G. 
  • Belov V. V. 
Part of the NATO Science Series book series (NAIV, volume 16)


It is well known that satellite methods are efficient means of remote monitoring of the atmospheric aerosol in real time. The algorithms of aerosol optical thickness (AOT) reconstruction from the data of NOAA/AVHRR radiometers recorded in the visible range of the spectrum have been developed and positive experience in their application for obtaining global information on the AOT of various regions of the global ocean has been accumulated (Afonin et al, 1997). On the other hand, there has been little and study on the applicability of these algorithms for monitoring of the aerosols above the Earth’s underlying surface or interior water basins and also for aerosol classification. Undoubtedly, satellite measurements in the infrared range of the spectrum in combination with the data obtained in the visible range extend the capabilities of remote aerosol monitoring in the daytime and provide the basis for detecting local aerosol formations at night.


Surface Atmospheric Layer Aerosol Optical Thickness Aerosol Characteristic Single Scatter Albedo Lidar Return Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonin S.V., Belov V.V., and Makuschkina, Simulation of the upwelling thermal radiation scattered by aerosol, takig into account temperature inhomogeneities on a surface. Part 3. Small scale high-temperature anomalies, Atmos. Oceanic Opt. 10, N. 2 (1997). 114–118.Google Scholar
  2. Afonin S.V., Belov V.V., and Makuschkina, Ir images transfer through the atmophere, Atmos. Oceanic Opt. 10, N. 4–5 (1997) 278–288.Google Scholar
  3. Balin Yu. S., Tikhomirov A. A., Samoilova S. V. Preliminary results of cloud and underlying surface sensing with the lidar BALKAN. Atmos. Oceanic Opt. 3. (1997) 333–352.Google Scholar
  4. Firsov K. M., Kataev M. Yu., Mitsel’ A. A, Ptashnik I.V., and Zuev V. V., JQSTR, 61, No. 1, (1999) 25–37.Google Scholar
  5. Karapuzikov A.I., Malov A.N., Sherstov, L.V. Infrared Phys. Technol., 41, (2000) 77–85.CrossRefGoogle Scholar
  6. Matvienko G. G., Kokhanenko G. P., Shamanaev V. S., Alekseev V. A. Project of the spaceborne lidar TECTONICA-A, Intern. Symp. Remote Sensing, Conf Abstr., Barselona, (1998) 37–38.Google Scholar
  7. McCormick M. P., Winker D. M., Browell E. V. Scientific investigations planned for the lidar in-space technology experiment (LITE), Bull. Meteor. Soc., 74, (1974) 205–214.CrossRefGoogle Scholar
  8. Reading C, coordinator. ESA SP-1143: Report of the Consultation Meeting. May 1991. ESA Publication Division. ESTEC, Noordwijk, The Netherlands, (1991) 32.Google Scholar
  9. Renger W., Kieme C; Schreiber H.-G., Wirth M., Moerl P. Airborne backscatter lidar measurements at 3 wavelengths during ELITE. Final Results, Workshop Proc. (IROE-CNR, Florence, Italy), (1995) 15–19.Google Scholar
  10. Rothman L.S., Gamache R.R., Tipping R.N. et al, J. Quant. Spectrosc. Radiat. Transfer 48, (1992) 469–507.CrossRefGoogle Scholar
  11. Zuev V. E., Krekov G. M., Naats L E. Determination of aerosol parameters of the atmosphere by laser sounding from space., Acta Astronautica, 1, (1974) 93–103.CrossRefGoogle Scholar
  12. Zakharov V. M., ed. Laser Sensing of the Atmosphere from Space. Gidrometeoizdat, Leningrad. (1988) 213.Google Scholar
  13. Zuev V. V., Mitsel’ A. A., and Ptashnik J. V., Atmos. Oceanic Opt., 5, No.9, (1992) 970–977.Google Scholar
  14. Winker D. M. Multipple scattering effects observed in LITE data: the good, the bad, and the ugly, Proc. MUSCLE, 8, (1996) 1–5.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Matvienko G. G. 
    • 1
  • Belov V. V. 
    • 1
  1. 1.Institute of Atmospheric Optics SB RASTomskRussia

Personalised recommendations